[1]Giovanni Li Manni, Simon D. Smart, Ali Alavi. Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins. J. Chem. Theory Comput., 12:1245–1258, 2016. doi:10.1021/acs.jctc.5b01190.
[2]Giovanni Li Manni, Ali Alavi. Understanding the mechanism stabilizing intermediate spin states in Fe(II)-porphyrin. J. Phys. Chem. A, 122(22):4935–4947, 2018. doi:10.1021/acs.jpca.7b12710.
[3]Giovanni Li Manni, Daniel Kats, David P Tew, Ali Alavi. On the role of valence and semi-core electron correlation on spin gaps in Fe(II)-porphyrins. ChemRxiv, 2018. doi:10.26434/chemrxiv.7195370.
[4]Björn O. Roos, Valera Veryazov, Per-Olof Widmark. Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor. Chem. Acc., 111:345–351, 2004. doi:10.1007/s00214-003-0537-0.
[5]Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A, 108:2851–2858, 2004. doi:10.1021/jp031064+.
[6]Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A, 109:6575–6579, 2005. doi:10.1021/jp0581126.
[7]Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. New relativistic ANO basis sets for actinide atoms. Chem. Phys. Letters, 409:295–299, 2005. doi:10.1016/j.cplett.2005.05.011.
[8]Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark, Antonio Carlos Borin. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the ce diatom and luf$_3$. J. Phys. Chem. A, 112:11431–11435, 2008. doi:10.1021/jp803213j.
[9]Björn O. Roos, Per-Åke Malmqvist, Laura Gagliardi. Heavy element quantum chemistry – the multiconfigurational approach. In Erkki J. Brändas, Eugene S. Kryachko, editors, Fundamental World of Quantum Chemistry. Vol. II, pages 425–442. Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.
[10]Francesco Aquilante, Roland Lindh, Thomas Bondo Pedersen. Unbiased auxiliary basis sets for accurate two-electron integral approximations. J. Chem. Phys., 127:114107, 2007. doi:10.1063/1.2777146.
[11]Francesco Aquilante, Per-Åke Malmqvist, Thomas Bondo Pedersen, Abhik Ghosh, Björn O. Roos. Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): Application to the spin-state energetics of co$^\mathrm III$(diiminato)(nph). J. Chem. Theory Comput., 4:694–702, 2008. doi:10.1021/ct700263h.
[12]Francesco Aquilante, Thomas Bondo Pedersen, Björn O. Roos, Alfredo Sánchez de Merás, Henrik Koch. Accurate \emph ab initio density fitting for multiconfigurational self-consistent field methods. J. Chem. Phys., 129:024113, 2008. doi:10.1063/1.2953696.
[13]Quan Manh Phung, Sebastian Wouters, Kristine Pierloot. Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: A benchmark study. J. Chem. Theory Comput., 12(9):4352–4361, 2016. doi:10.1021/acs.jctc.6b00714.
[14]Sebastian Wouters, Veronique Van Speybroeck, Dimitri Van Neck. DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes. J. Chem. Phys., 145(5):054120, 2016. doi:10.1063/1.4959817.
[15]Naoki Nakatani, Sheng Guo. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations. J. Chem. Phys., 146(9):094102, 2017. doi:10.1063/1.4976644.
[16]Dongxia Ma, Giovanni Li Manni, Laura Gagliardi. The generalized active space concept in multiconfigurational self-consistent field methods. J. Chem. Phys., 135:044128, 2011. doi:10.1063/1.3611401.
[17]Björn O. Roos. The multiconfigurational (MC) self-consistent field (SCF) theory. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 177–254. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_4.
[18]James Finley, Per-Åke Malmqvist, Björn O. Roos, Luis Serrano-Andrés. The multi-state CASPT2 method. Chem. Phys. Letters, 288:299–306, 1998. doi:10.1016/S0009-2614(98)00252-8.
[19]John D. Watts, Jürgen Gauss, Rodney J. Bartlett. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. J. Chem. Phys., 98:8718–8733, 1993. doi:10.1063/1.464480.
[20]Pavel Neogrády, Miroslav Urban. Spin-adapted restricted Hartree–Fock reference coupled-cluster theory for open-shell systems: Noniterative triples for noncanonical orbitals. Int. J. Quantum Chem., 55:187–203, 1995. doi:10.1002/qua.560550214.
[21]Roland Lindh. The reduced multiplication scheme of the Rys–Gauss quadrature for 1st order integral derivatives. Theor. Chim. Acta, 85:423–440, 1993. doi:10.1007/BF01112982.
[22]Shervin Fatehi, Joseph E. Subotnik. Derivative couplings with built-in electron-translation factors: Application to benzene. J. Phys. Chem. Lett., 3(15):2039–2043, 2012. doi:10.1021/jz3006173.
[23]Michael Stenrup, Roland Lindh, Ignacio Fdez. Galván. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization. J. Comput. Chem., 36(22):1698–1708, 2015. doi:10.1002/jcc.23987.
[24]Kerstin Andersson, Per-Åke Malmqvist, Björn O. Roos, Andrzej Sadlej, Krzysztof Wolinski. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem., 94:5483–5486, 1990. doi:10.1021/j100377a012.
[25]Kerstin Andersson, Per-Åke Malmqvist, Björn O. Roos. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys., 96:1218–1226, 1992. doi:10.1063/1.462209.
[26]Per Åke Malmqvist, Kristine Pierloot, Abdul Rehaman Moughal Shahi, Christopher J. Cramer, Laura Gagliardi. The restricted active space followed by second-order perturbation theory method: Theory and application to the study of cuo$_2$ and cu$_2$o$_2$ systems. J. Chem. Phys., 128:204109, 2008. doi:10.1063/1.2920188.
[27]Vicenta Sauri, Luis Serrano-Andrés, Abdul Rehaman Moughal Shahi, Laura Gagliardi, Steven Vancoillie, Kristine Pierloot. Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: A benchmark study. J. Chem. Theory Comput., 7:153–168, 2011. doi:10.1021/ct100478d.
[28]Björn O. Roos, Markus P. Fülscher, Per-Åke Malmqvist, Manuela Merchán, Luis Serrano-Andrés. Theoretical studies of the electronic spectra of organic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 357–438. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_8.
[29]Björn O. Roos, Kerstin Andersson, Markus P. Fülscher, Per-Åke Malmqvist, Luis Serrano-Andrés, Kristine Pierloot, Manuela Merchán. Multiconfigurational perturbation theory: Applications in electronic spectroscopy. In I. Prigogine, Stuart A. Rice, editors, New Methods in Computational Quantum Mechanics, volume 93 of Advances in Chemical Physics, pages 213–331. John Wiley & Sons, Hoboken, NJ, USA, 1996. doi:10.1002/9780470141526.ch5.
[30]Kerstin Andersson, Björn O. Roos. Multiconfigurational second-order perturbation theory: A test of geometries and binding energies. Int. J. Quantum Chem., 45:591–607, 1993. doi:10.1002/qua.560450610.
[31]Giovanni Ghigo, Björn O. Roos, Per-Åke Malmqvist. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Letters, 396:142–149, 2004. doi:10.1016/j.cplett.2004.08.032.
[32]K. Andersson. Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor. Chim. Acta, 91:31–46, 1995. doi:10.1007/BF01113860.
[33]Björn O. Roos, Kerstin Andersson. Multiconfigurational perturbation theory with level shift — the cr$_2$ potential revisited. Chem. Phys. Letters, 245:215–223, 1995. doi:10.1016/0009-2614(95)01010-7.
[34]Björn O. Roos, Kerstin Andersson, Markus P. Fülscher, Luis Serrano-Andrés, Kristine Pierloot, Manuela Merchán, Vicent Molina. Applications of level shift corrected perturbation theory in electronic spectroscopy. J. Mol. Struct. Theochem, 388:257–276, 1996. doi:10.1016/S0166-1280(96)80039-X.
[35]Niclas Forsberg, Per-Åke Malmqvist. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Letters, 274:196–204, 1997. doi:10.1016/S0009-2614(97)00669-6.
[36]A. A. Granovsky. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys., 134:214113, 2011. doi:10.1063/1.3596699.
[37]T. Shiozaki, W. Győrffy, P. Celani, H.-J. Werner. Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J. Chem. Phys., 135:081106, 2011. doi:10.1063/1.3633329.
[38]Thorstein Thorsteinsson, David L. Cooper, Joseph Gerratt, Peter B. Karadakov, Mario Raimondi. Modern valence bond representations of CASSCF wavefunctions. Theor. Chim. Acta, 93:343–366, 1996. doi:10.1007/BF01129215.
[39]David L. Cooper, Thorstein Thorsteinsson, Joseph Gerratt. Fully variational optimization of modern VB wave functions using the CASVB strategy. Int. J. Quantum Chem., 65:439–451, 1997. doi:10.1002/(SICI)1097-461X(1997)65:5<439::AID-QUA8>3.0.CO;2-X.
[40]David L. Cooper, Thorstein Thorsteinsson, Joseph Gerratt. Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy. Adv. Quantum Chem., 32:51–67, 1998. doi:10.1016/S0065-3276(08)60406-2.
[41]T. Thorsteinsson, D. L. Cooper. An overview of the CASVB approach to modern valence bond calculations. In Alfonso Hernández-Laguna, Jean Maruani, Roy McWeeny, Stephen Wilson, editors, Quantum Systems in Chemistry and Physics. Vol. 1: Basic problems and models systems, pages 303–326. Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.
[42]Thorstein Thorsteinsson, David L. Cooper. Modern valence bond descriptions of molecular excited states: An application of CASVB. Int. J. Quantum Chem., 70:637–650, 1998. doi:10.1002/(SICI)1097-461X(1998)70:4/5<637::AID-QUA10>3.0.CO;2-#.
[43]Thorstein Thorsteinsson, David L. Cooper, Joseph Gerratt, Mario Raimondi. Symmetry adaptation and the utilization of point group symmetry in valence bond calculations, including CASVB. Theor. Chim. Acta, 95:131–150, 1997. doi:10.1007/BF02341697.
[44]Thorstein Thorsteinsson, David L. Cooper. Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB. J. Math. Chem., 23:105–106, 1998. doi:10.1023/A:1019100703879.
[45]Guido Raos, Joseph Gerratt, David L. Cooper, Mario Raimondi. Spin correlation in π-electron systems from spin-coupled wavefunctions. I. Theory and first applications. Chem. Phys., 186:233–250, 1994. doi:10.1016/0301-0104(94)00177-4.
[46]Guido Raos, Joseph Gerratt, David L. Cooper, Mario Raimondi. Spin correlation in π-electron systems from spin-coupled wavefunctions. II. Further applications. Chem. Phys., 186:251–273, 1994. doi:10.1016/0301-0104(94)00178-2.
[47]David L. Cooper, Robert Ponec, Thorstein Thorsteinsson, Guido Raos. Pair populations and effective valencies from ab initio SCF and spin-coupled wave functions. Int. J. Quantum Chem., 57:501–518, 1996. doi:10.1002/(SICI)1097-461X(1996)57:3<501::AID-QUA24>3.0.CO;2-4.
[48]B. H. Chirgwin, C. A. Coulson. The electronic structure of conjugated systems. VI. Proc. Roy. Soc. Lond. A, 201:196–209, 1950. doi:10.1098/rspa.1950.0053.
[49]G. A. Gallup, J. M. Norbeck. Population analyses of valence-bond wavefunctions and beh$_2$. Chem. Phys. Letters, 21:495–500, 1973. doi:10.1016/0009-2614(73)80292-1.
[50]Pavel Neogrády, Miroslav Urban, Ivan Hubač. Spin adapted restricted Hartree–Fock reference coupled cluster theory for open shell systems. J. Chem. Phys., 100:3706–3716, 1994. doi:10.1063/1.466359.
[51]Pavel Neogrády, Miroslav Urban, Ivan Hubač. Spin adapted restricted open shell coupled cluster theory. Linear version. J. Chem. Phys., 97:5074–5080, 1992. doi:10.1063/1.463828.
[52]Peter J. Knowles, Claudia Hampel, Hans-Joachim Werner. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys., 99:5219–5227, 1993. doi:10.1063/1.465990.
[53]Miroslav Urban, Jozef Noga, Samuel J. Cole, Rodney J. Bartlett. Towards a full CCSDT model for electron correlation. J. Chem. Phys., 83:4041–4046, 1985. doi:10.1063/1.449067.
[54]Krishnan Raghavachari, Gary W. Trucks, John A. Pople, Martin Head-Gordon. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Letters, 157:479–483, 1989. doi:10.1016/S0009-2614(89)87395-6.
[55]Reinhart Ahlrichs, Peter Scharf, Claus Ehrhardt. The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional. J. Chem. Phys., 82:890–898, 1985. doi:10.1063/1.448517.
[56]Delano P. Chong, Stephen R. Langhoff. A modified coupled pair functional approach. J. Chem. Phys., 84:5606–5610, 1986. doi:10.1063/1.449920.
[57]Robert J. Gdanitz, Reinhart Ahlrichs. The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD). Chem. Phys. Letters, 143:413–420, 1988. doi:10.1016/0009-2614(88)87388-3.
[58]B. Roos. A new method for large-scale Cl calculations. Chem. Phys. Letters, 15:153–159, 1972. doi:10.1016/0009-2614(72)80140-4.
[59]Isaiah Shavitt. Graph theoretical concepts for the unitary group approach to the many-electron correlation problem. Int. J. Quantum Chem., 12-S11:131–148, 1977. doi:10.1002/qua.560120819.
[60]Isaiah Shavitt. Matrix element evaluation in the unitary group approach to the electron correlation problem. Int. J. Quantum Chem., 14-S12:5–32, 1978. doi:10.1002/qua.560140803.
[61]Per E. M. Siegbahn. Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations. J. Chem. Phys., 72:1647–1656, 1980. doi:10.1063/1.439365.
[62]S. Keller, M. Dolfi, M. Troyer, M. Reiher. An efficient matrix product operator representation of the quantum-chemical Hamiltonian. J. Chem. Phys., 143:244118, 2015. doi:10.1063/1.4939000.
[63]S. Keller, M. Reiher. Spin-adapted matrix product states and operators. J. Chem. Phys., 144:134101, 2016. doi:10.1063/1.4944921.
[64]S. Knecht, E. D. Hedegård, S. Keller, A. Kovyrshin, Y. Ma, A. Muolo, C. J. Stein, M. Reiher. New approaches for ab initio calculations of molecules with strong electron correlation. Chimia, 70:244–251, 2016. doi:10.2533/chimia.2016.244.
[65]William C. Swope, Hans C. Andersen, Peter H. Berens, Kent R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys., 76:637–649, 1982. doi:10.1063/1.442716.
[66]I. V. Abarenkov. Unit cell for a lattice electrostatic potential. Phys. Rev. B, 76:165127, 2007. doi:10.1103/PhysRevB.76.165127.
[67]Peter V. Sushko, Igor V. Abarenkov. General purpose electrostatic embedding potential. J. Chem. Theory Comput., 6:1323–1333, 2010. doi:10.1021/ct900480p.
[68]Alessio Valentini, Daniel Rivero, Felipe Zapata, Cristina García-Iriepa, Marco Marazzi, Raúl Palmeiro, Ignacio Fdez. Galván, Diego Sampedro, Massimo Olivucci, Luis Manuel Frutos. Optomechanical control of quantum yield in \emph Trans–\emph Cis ultrafast photoisomerization of a retinal chromophore model. Angew. Chem. Int. Ed., 56(14):3842–3846, 2017. doi:10.1002/anie.201611265.
[69]A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys., 12:107–142, 1967. doi:10.1002/9780470143582.ch2.
[70]Jorge M. del Campo, Andreas M. Köster. A hierarchical transition state search algorithm. J. Chem. Phys., 129:024107, 2008. doi:10.1063/1.2950083.
[71]Richard C. Raffenetti. General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; molecular integral evaluation. J. Chem. Phys., 58:4452–4458, 1973. doi:10.1063/1.1679007.
[72]Jan Almlöf, Peter R. Taylor. General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. J. Chem. Phys., 86:4070–4077, 1987. doi:10.1063/1.451917.
[73]Per-Olof Widmark, Per-Åke Malmqvist, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. I. First row atoms. Theor. Chim. Acta, 77:291, 1990. doi:10.1007/BF01120130.
[74]Per-Olof Widmark, B. Joakim Persson, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. II. Second row atoms. Theor. Chim. Acta, 79:419–432, 1991. doi:10.1007/BF01112569.
[75]Rosendo Pou-Amérigo, Manuela Merchán, Ignacio Nebot-Gil, Per-Olof Widmark, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. III. First row transition metal atoms. Theor. Chim. Acta, 92:149–181, 1995. doi:10.1007/BF01114922.
[76]Kristine Pierloot, Birgit Dumez, Per-Olof Widmark, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms h–kr. Theor. Chim. Acta, 90:87–114, 1995. doi:10.1007/BF01113842.
[77]Victor P. Vysotskiy, Jonas Boström, Valera Veryazov. A new module for constrained multi-fragment geometry optimization in internal coordinates implemented in the MOLCAS package. J. Comput. Chem., 34:2657–2665, 2013. doi:10.1002/jcc.23428.
[78]Yubin Wang, Gaohong Zhai, Binbin Suo, Zhengting Gan, Zhenyi Wen. Hole–particle correspondence in CI calculations. Chem. Phys. Letters, 375:134–140, 2003. doi:10.1016/S0009-2614(03)00849-2.
[79]Bing Suo, Gaohong Zhai, Yubin Wang, Zhenyi Wen, Xiangqian Hu, Lemin Li. Parallelization of MRCI based on hole–particle symmetry. J. Comput. Chem., 26:88–96, 2005. doi:10.1002/jcc.20148.
[80]János Pipek, Paul G. Mezey. A fast intrinsic localization procedure applicable for \emph ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys., 90:4916–4926, 1989. doi:10.1063/1.456588.
[81]S. F. Boys. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys., 32:296–299, 1960. doi:10.1103/RevModPhys.32.296.
[82]J. M. Foster, S. F. Boys. Canonical configurational interaction procedure. Rev. Mod. Phys., 32:300–302, 1960. doi:10.1103/RevModPhys.32.300.
[83]Clyde Edmiston, Klaus Ruedenberg. Localized atomic and molecular orbitals. Rev. Mod. Phys., 35:457–465, 1963. doi:10.1103/RevModPhys.35.457.
[84]Francesco Aquilante, Thomas Bondo Pedersen, Alfredo Sánchez de Merás, Henrik Koch. Fast noniterative orbital localization for large molecules. J. Chem. Phys., 125:174101, 2006. doi:10.1063/1.2360264.
[85]Joseph E. Subotnik, Yihan Shao, WanZhen Liang, Martin Head-Gordon. An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals. J. Chem. Phys., 121:9220–9229, 2004. doi:10.1063/1.1790971.
[86]Laura Gagliardi, Roland Lindh, Gunnar Karlström. Local properties of quantum chemical systems: The LoProp approach. J. Chem. Phys., 121:4494–4500, 2004. doi:10.1063/1.1778131.
[87]Axel D. Becke, Erin R. Johnson. Exchange-hole dipole moment and the dispersion interaction. J. Chem. Phys., 122:154104, 2005. doi:10.1063/1.1884601.
[88]Anders Bernhardsson, Roland Lindh, Jeppe Olsen, Markus Fülscher. A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation. Mol. Phys., 96:617–628, 1999. doi:10.1080/00268979909482998.
[89]Jonna Stålring, Anders Bernhardsson, Roland Lindh. Analytical gradients of a state average MCSCF state and a state average diagnostic. Mol. Phys., 99:103–114, 2001. doi:10.1080/002689700110005642.
[90]Jeppe Olsen, Björn O. Roos, Poul Jørgensen, Hans Jørgen Aa. Jensen. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. J. Chem. Phys., 89:2185–2192, 1988. doi:10.1063/1.455063.
[91]Giovanni Li Manni, Rebecca K. Carlson, Sijie Luo, Dongxia Ma, Jeppe Olsen, Donald G. Truhlar, Laura Gagliardi. Multi-configuration pair-density functional theory. J. Chem. Theory Comput., 10:3669–3680, 2014. doi:10.1021/ct500483t.
[92]Rebecca K. Carlson, Giovanni Li Manni, Andrew L. Sonnenberger, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration pair-density functional theory: Barrier heights and main group and transition metal energetics. J. Chem. Theory Comput., 11:82–90, 2015. doi:10.1021/ct5008235.
[93]Rebecca K. Carlson, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration pair-density functional theory: A fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of re$_2$cl$_8^2-$. J. Chem. Theory Comput., 11(9):4077, 2015. doi:10.1021/acs.jctc.5b00609.
[94]S. Knecht, S. Keller, J. Autschbach, M. Reiher. A nonorthogonal state-interaction approach for matrix product state wave functions. J. Chem. Theory Comput., 12:5881–5894, 2016. doi:10.1021/acs.jctc.6b00889.
[95]Per-Åke Malmqvist, Björn O. Roos. The CASSCF state interaction method. Chem. Phys. Letters, 155:189–194, 1989. doi:10.1016/0009-2614(89)85347-3.
[96]Philip W. Anderson. New approach to the theory of superexchange interactions. Phys. Rev., 115(1):2–13, Jul 1959. doi:10.1103/PhysRev.115.2.
[97]Philip W. Anderson. Theory of magnetic exchange interactions: Exchange in insulators and semiconductors. In Frederick Seitz, David Turnbull, editors, Solid State Physics, volume 14, pages 99–214. Academic Press, 1963. doi:10.1016/S0081-1947(08)60260-X.
[98]M. E. Lines. Orbital angular momentum in the theory of paramagnetic clusters. J. Chem. Phys., 55(6):2977–2984, 1971. doi:10.1063/1.1676524.
[99]A. Wallqvist, P. Ahlström, G. Karlström. New intermolecular energy calculation scheme: Applications to potential surface and liquid properties of water. J. Phys. Chem., 94:1649–1656, 1990. doi:10.1021/j100367a078.
[100]Nigel W. Moriarty, Gunnar Karlström. Electronic polarization of a water molecule in water. A combined quantum chemical and statistical mechanical treatment. J. Phys. Chem., 100:17791–17796, 1996. doi:10.1021/jp9614761.
[101]Anders Öhrn, Gunnar Karlström. A theoretical study of the solvent shift to the $n \to \pi ^*$ transition in formaldehyde with an effective discrete quantum chemical solvent model including non-electrostatic perturbation. Mol. Phys., 104:3087–3099, 2006. doi:10.1080/00268970600965629.
[102]Anders Öhrn, Francesco Aquilante. \emph p-benzoquinone in aqueous solution: Stark shifts in spectra, asymmetry in solvent structure. Phys. Chem. Chem. Phys., 9:470–480, 2007. doi:10.1039/B613833K.
[103]Anders Öhrn. Development and Application of a First Principle Molecular Model for Solvent Effects. PhD thesis, Lunds Universitet, Theor. Chemistry, Chem. Center, P.O.B. 124,S-221 00 Lund, Sweden, 2008. URL:
[104]Björn O. Roos, Peter R. Taylor, Per E. M. Siegbahn. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys., 48:157–173, 1980. doi:10.1016/0301-0104(80)80045-0.
[105]Björn O. Roos. The complete active space self-consistent field method and its applications in electronic structure calculations. In K. P. Lawley, editor, Ab Initio Methods in Quantum Chemistry Part II, volume 69 of Advances in Chemical Physics, pages 399–445. John Wiley & Sons, Hoboken, NJ, USA, 1987. doi:10.1002/9780470142943.ch7.
[106]Per-Åke Malmqvist, Alistair Rendell, Björn O. Roos. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem., 94:5477–5482, 1990. doi:10.1021/j100377a011.
[107]Björn O. Roos. The complete active space SCF method in a Fock-matrix-based super-CI formulation. Int. J. Quantum Chem., 18-S14:175–189, 1980. doi:10.1002/qua.560180822.
[108]George H. Booth, Alex J. W. Thom, Ali Alavi. Fermion Monte Carlo without fixed nodes: a game of life, death and annihilation in Slater determinant space. J. Chem. Phys., 131:054106, 2009. doi:10.1063/1.3193710.
[109]Catherine Overy, George H. Booth, N. S. Blunt, James J. Shepherd, Deidre Cleland, Ali Alavi. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo. J. Chem. Phys., 141:244117, 2014. doi:10.1063/1.4904313.
[110]Francesco Aquilante, Thomas Bondo Pedersen, Roland Lindh. Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J. Chem. Phys., 126:194106, 2007. doi:10.1063/1.2736701.
[111]Per-Åke Malmqvist. Calculation of transition density matrices by nonunitary orbital transformations. Int. J. Quantum Chem., 30:479–494, 1986. doi:10.1002/qua.560300404.
[112]Steven Vancoillie, Per-Åke Malmqvist, Kristine Pierloot. Calculation of EPR $g$ tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). ChemPhysChem, 8:1803–1815, 2007. doi:10.1002/cphc.200700128.
[113]Steven Vancoillie, Lubomír Rulíšek, Frank Neese, Kristine Pierloot. Theoretical description of the structure and magnetic properties of nitroxide–cu(ii)–nitroxide spin triads by means of multiconfigurational ab initio calculations. J. Phys. Chem. A, 113:6149–6157, 2009. doi:10.1021/jp900822v.
[114]Chad E. Hoyer, Xuefei Xu, Dongxia Ma, Laura Gagliardi, Donald G. Truhlar. Diabatization based on the dipole and quadrupole: The DQ method. J. Chem. Phys., 141(11):114104, 2014. doi:10.1063/1.4894472.
[115]Joseph E. Subotnik, Sina Yeganeh, Robert J. Cave, Mark A. Ratner. Constructing diabatic states from adiabatic states: extending generalized Mulliken–Hush to multiple charge centers with Boys localization. J. Chem. Phys., 129(24):244101, 2008. doi:10.1063/1.3042233.
[116]J. Almlöf, K. Faegri, Jr., K. Korsell. Principles for a direct SCF approach to LICAO–MO \emph ab-initio calculations. J. Comput. Chem., 3:385–399, 1982. doi:10.1002/jcc.540030314.
[117]Dieter Cremer, Jürgen Gauss. An unconventional SCF method for calculations on large molecules. J. Comput. Chem., 7:274–282, 1986. doi:10.1002/jcc.540070305.
[118]Marco Häser, Reinhart Ahlrichs. Improvements on the direct SCF method. J. Comput. Chem., 10:104–111, 1989. doi:10.1002/jcc.540100111.
[119]Gunnar Karlström. Dynamical damping based on energy minimization for use ab initio molecular orbital SCF calculations. Chem. Phys. Letters, 67:348–350, 1979. doi:10.1016/0009-2614(79)85175-1.
[120]Harrell Sellers. The C\textsuperscript 2-DIIS convergence acceleration algorithm. Int. J. Quantum Chem., 45:31–41, 1993. doi:10.1002/qua.560450106.
[121]Thomas H. Fischer, Jan Almlöf. General methods for geometry and wave function optimization. J. Phys. Chem., 96:9768–9774, 1992. doi:10.1021/j100203a036.
[122]S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 58:1200–1211, 1980. doi:10.1139/p80-159.
[123]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988. doi:10.1103/PhysRevA.38.3098.
[124]P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, 1964. doi:10.1103/PhysRev.136.B864.
[125]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, 1965. doi:10.1103/PhysRev.140.A1133.
[126]J. C. Slater. Quantum Theory of Molecular and Solids. Vol. 4. The Self-Consistent Field for Molecular and Solids. McGraw–Hill, New York, NY, USA, 1974.
[127]A. D. Becke. Density functional calculations of molecular bond energies. J. Chem. Phys., 84:4524–4529, 1986. doi:10.1063/1.450025.
[128]Axel D. Becke, Erin R. Johnson. A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys., 127:124108, 2007. doi:10.1063/1.2768530.
[129]Nicholas C. Handy, Aron J. Cohen. Left–right correlation energy. Mol. Phys., 99:403–412, 2001. doi:10.1080/00268970010018431.
[130]Chengteh Lee, Weitao Yang, Robert G. Parr. Development of the colle–salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, 1988. doi:10.1103/PhysRevB.37.785.
[131]Burkhard Miehlich, Andreas Savin, Hermann Stoll, Heinzwerner Preuss. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Letters, 157:200–206, 1989. doi:10.1016/0009-2614(89)87234-3.
[132]John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Letters, 77:3865–3868, 1996. doi:10.1103/PhysRevLett.77.3865.
[133]Axel D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98:5648–5652, 1993. doi:10.1063/1.464913.
[134]Stefan Grimme. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys., 124:034108, 2006. doi:10.1063/1.2148954.
[135]Phillip A. Stewart, Peter M. W. Gill. Becke–Wigner: A simple but powerful density functional. J. Chem. Soc. Faraday Trans., 91:4337–4341, 1995. doi:10.1039/FT9959104337.
[136]Peter M. W. Gill. A new gradient-corrected exchange functional. Mol. Phys., 89:433–445, 1996. doi:10.1080/002689796173813.
[137]Wee-Meng Hoe, Aaron J. Cohen, Nicholas C. Handy. Assessment of a new local exchange functional OPTX. Chem. Phys. Letters, 341:319–328, 2001. doi:10.1016/S0009-2614(01)00581-4.
[138]Mark J. Allen, Thomas W. Keal, David J. Tozer. Improved NMR chemical shifts in density functional theory. Chem. Phys. Letters, 380:70–77, 2003. doi:10.1016/j.cplett.2003.08.101.
[139]Thomas W. Keal, David J. Tozer. A semiempirical generalized gradient approximation exchange-correlation functional. J. Chem. Phys., 121:5654–5660, 2004. doi:10.1063/1.1784777.
[140]John P. Perdew, Matthias Ernzerhof, Kieron Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105:9982–9985, 1996. doi:10.1063/1.472933.
[141]Adrienn Ruzsinszky, Gábor I. Csonka, Gustavo E. Scuseria. Regularized gradient expansion for atoms, molecules, and solids. J. Chem. Theory Comput., 5:763–769, 2009. doi:10.1021/ct8005369.
[142]Vincent Tognetti, Pietro Cortona, Carlo Adamo. A new parameter-free correlation functional based on an average atomic reduced density gradient analysis. J. Chem. Phys., 128:034101, 2008. doi:10.1063/1.2816137.
[143]Marcel Swart, Miquel Solà, F. Matthias Bickelhaupt. A new all-round density functional based on spin states and S$_\mathrm N$2 barriers. J. Chem. Phys., 131:049103, 2009. doi:10.1063/1.3213193.
[144]Yan Zhao, Donald G. Truhlar. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 125:194101, 2006. doi:10.1063/1.2370993.
[145]Yan Zhao, Donald G. Truhlar. Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 110:13126–13130, 2006. doi:10.1021/jp066479k.
[146]Yan Zhao, Donald G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 120:215–241, 2008. doi:10.1007/s00214-007-0310-x.
[147]Yan Zhao, Donald G. Truhlar. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 41:157–167, 2008. doi:10.1021/ar700111a.
[148]R. Lindh, U. Ryu, B. Liu. The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation. J. Chem. Phys., 95:5889–5897, 1991. doi:10.1063/1.461610.
[149]Ernest R. Davidson. Use of double cosets in constructing integrals over symmetry orbitals. J. Chem. Phys., 62:400–403, 1975. doi:10.1063/1.430484.
[150]Benny G. Johnson, Peter M. W. Gill, John A. Pople. The performance of a family of density functional methods. J. Chem. Phys., 98:5612–5626, 1993. doi:10.1063/1.464906.
[151]Nicholas C. Handy, David J. Tozer, Gregory J. Laming, Christopher W. Murray, Roger D. Amos. Analytic second derivatives of the potential energy surface. Isr. J. Chem., 33:331–344, 1993. doi:10.1002/ijch.199300040.
[152]Jon Baker, Jan Andzelm, Andrew Scheiner, Bernard Delley. The effect of grid quality and weight derivatives in density functional calculations. J. Chem. Phys., 101:8894–8902, 1994. doi:10.1063/1.468081.
[153]Michael E. Mura, Peter J. Knowles. Improved radial grids for quadrature in molecular density-functional calculations. J. Chem. Phys., 104:9848–9858, 1996. doi:10.1063/1.471749.
[154]A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88:2547–2553, 1988. doi:10.1063/1.454033.
[155]Christopher W. Murray, Nicholas C. Handy, Gregory J. Laming. Quadrature schemes for integrals of density functional theory. Mol. Phys., 78:997–1014, 1993. doi:10.1080/00268979300100651.
[156]Oliver Treutler, Reinhart Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102:346–354, 1995. doi:10.1063/1.469408.
[157]Roland Lindh, Per-Åke Malmqvist, Laura Gagliardi. Molecular integrals by numerical quadrature. I. Radial integration. Theor. Chem. Acc., 106:178–187, 2001. doi:10.1007/s002140100263.
[158]Daoling Peng, Markus Reiher. Exact decoupling of the relativistic Fock operator. Theor. Chem. Acc., 131:1081, 2012. doi:10.1007/s00214-011-1081-y.
[159]Daoling Peng, Kimihiko Hirao. An arbitrary order Douglas–Kroll method with polynomial cost. J. Chem. Phys., 130:044102, 2009. doi:10.1063/1.3068310.
[160]Markus Reiher, Alexander Wolf. Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys., 121:2037–2047, 2004. doi:10.1063/1.1768160.
[161]Markus Reiher, Alexander Wolf. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order. J. Chem. Phys., 121:10945–10956, 2004. doi:10.1063/1.1818681.
[162]Markus Reiher. Douglas–Kroll–Hess theory: a relativistic electrons-only theory for chemistry. Theor. Chem. Acc., 116:241–252, 2006. doi:10.1007/s00214-005-0003-2.
[163]Alexander Wolf, Markus Reiher, Bernd Artur Hess. The generalized Douglas–Kroll transformation. J. Chem. Phys., 117:9215–9226, 2002. doi:10.1063/1.1515314.
[164]Alexander Wolf, Markus Reiher. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. J. Chem. Phys., 124:064102, 2006. doi:10.1063/1.2161179.
[165]Alexander Wolf, Markus Reiher. Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas–Kroll–Hess theory up to arbitrary order. J. Chem. Phys., 124:064103, 2006. doi:10.1063/1.2161180.
[166]Werner Kutzelnigg, Wenjian Liu. Quasirelativistic theory equivalent to fully relativistic theory. J. Chem. Phys., 123:241102, 2005. doi:10.1063/1.2137315.
[167]Wenjian Liu, Daoling Peng. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J. Chem. Phys., 125:044102, 2006. doi:10.1063/1.2222365.
[168]Daoling Peng, Wenjian Liu, Yunlong Xiao, Lan Cheng. Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J. Chem. Phys., 127:104106, 2007. doi:10.1063/1.2772856.
[169]Maria Barysz, Andrzej J. Sadlej, Jaap G. Snijders. Nonsingular two/one-component relativistic Hamiltonians accurate through arbitrary high order in $\alpha ^2$. Int. J. Quantum Chem., 65:225–239, 1997. doi:10.1002/(SICI)1097-461X(1997)65:3<225::AID-QUA4>3.0.CO;2-Y.
[170]Dariusz Kędziera, Maria Barysz. Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation. Chem. Phys. Letters, 446:176–181, 2007. doi:10.1016/j.cplett.2007.08.006.
[171]Daoling Peng, Markus Reiher. Local relativistic exact decoupling. J. Chem. Phys., 136:244108, 2012. doi:10.1063/1.4729788.
[172]Liviu F. Chibotaru, Liviu Ungur, Alessandro Soncini. The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem. Int. Ed., 47:4126–4129, 2008. doi:10.1002/anie.200800283.
[173]Liviu F. Chibotaru, Liviu Ungur, Christophe Aronica, Hani Elmoll, Guillaume Pillet, Dominique Luneau. Structure, magnetism, and theoretical study of a mixed-valence co$^\mathrm II_3$co$^\mathrm III_4$ heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc., 130:12445–12455, 2008. doi:10.1021/ja8029416.
[174]Liviu F. Chibotaru, Liviu Ungur. \emph Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys., 137:064112, 2012. doi:10.1063/1.4739763.
[175]Liviu Ungur, Liviu F. Chibotaru. Ab initio crystal field for lanthanides. Chem. Eur. J., 23(15):3708–3718, 2017. doi:10.1002/chem.201605102.
[176]Czeslaw Rudowicz. Transformation relations for the conventional $O^k_q$ and normalised $O’^k_q$ Stevens Operator Equivalents with $k=1$ to $6$ and $-k \le q \le k$. J. Phys. C: Solid State Phys., 18(7):1415, 1985. doi:10.1088/0022-3719/18/7/009.
[177]C. Rudowicz, C. Y. Chung. Generalization of the extended Stevens operators to higher ranks and spins and systematic review of the tables of the tensor operators and their matrix elements. J. Phys.: Condens. Matter, 16(32):5825, 2004. doi:10.1088/0953-8984/16/32/018.
[178]Czeslaw Rudowicz, Miroslav Karbowiak. Disentangling intricate web of interrelated notions at the interface between the \emph physical (crystal field) Hamiltonians and the \emph effective (spin) Hamiltonians. Coord. Chem. Rev., 287:28, 2015. doi:10.1016/j.ccr.2014.12.006.
[179]Roland Lindh, Anders Bernhardsson, Gunnar Karlström, Per-Åke Malmqvist. On the use of a Hessian model function in molecular geometry optimizations. Chem. Phys. Letters, 241:423–428, 1995. doi:10.1016/0009-2614(95)00646-L.
[180]Chunyang Peng, Philippe Y. Ayala, H. Bernhard Schlegel, Michael J. Frisch. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 17:49–56, 1996. doi:10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0.
[181]P. Pulay, G. Fogarasi. Geometry optimization in redundant internal coordinates. J. Chem. Phys., 96:2856–2860, 1992. doi:10.1063/1.462844.
[182]Jon Baker, Alain Kessi, Bernard Delley. The generation and use of delocalized internal coordinates in geometry optimization. J. Chem. Phys., 105:192–212, 1996. doi:10.1063/1.471864.
[183]Roland Lindh, Anders Bernhardsson, Martin Schütz. Force-constant weighted redundant coordinates in molecular geometry optimizations. Chem. Phys. Letters, 303:567–575, 1999. doi:10.1016/S0009-2614(99)00247-X.
[184]Jon Baker. Techniques for geometry optimization: A comparison of Cartesian and natural internal coordinates. J. Comput. Chem., 14:1085–1100, 1993. doi:10.1002/jcc.540140910.
[185]M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, Jr., K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople. Gaussian 94 (Revision A.1). Gaussian, Inc., Pittsburgh, PA, USA, 1995.
[186]Josep Maria Bofill. Updated Hessian matrix and the restricted step method for locating transition structures. J. Comput. Chem., 15:1–11, 1994. doi:10.1002/jcc.540150102.
[187]Josep Maria Bofill. Remarks on the updated Hessian matrix methods. Int. J. Quantum Chem., 94:324–332, 2003. doi:10.1002/qua.10709.
[188]Ajit Banerjee, Noah Adams, Jack Simons, Ron Shepard. Search for stationary points on surfaces. J. Phys. Chem., 89:52–57, 1985. doi:10.1021/j100247a015.
[189]Emili Besalú, Josep Maria Bofill. On the automatic restricted-step rational-function-optimization method. Theor. Chem. Acc., 100:265–274, 1998. doi:10.1007/s002140050387.
[190]Pál Császár, Péter Pulay. Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struct., 114:31–34, 1984. doi:10.1016/S0022-2860(84)87198-7.
[191]Péter Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Letters, 73:393–398, 1980. doi:10.1016/0009-2614(80)80396-4.
[192]P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3:556–560, 1982. doi:10.1002/jcc.540030413.
[193]Charles J. Cerjan, William H. Miller. On finding transition states. J. Chem. Phys., 75:2800–2806, 1981. doi:10.1063/1.442352.
[194]Satoshi Maeda, Koichi Ohno, Keiji Morokuma. Updated branching plane for finding conical intersections without coupling derivative vectors. J. Chem. Theory Comput., 6(5):1538–1545, 2010. doi:10.1021/ct1000268.
[195]John C. Tully. Molecular dynamics with electronic transitions. J. Chem. Phys., 93(2):1061–1071, 1990. doi:10.1063/1.459170.
[196]Sharon Hammes-Schiffer, John C. Tully. Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys., 101(6):4657–4667, 1994. doi:10.1063/1.467455.
[197]Giovanni Granucci, Maurizio Persico. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys., 126(13):134114, 2007. doi:10.1063/1.2715585.
[198]F. Plasser, M. Wormit, S. A. Mewes, B. Thomitzni, A. Dreuw. libwfa: Wave-function analysis tool library for quantum chemical applications. URL:
[199]Felix Plasser, Stefanie A. Mewes, Andreas Dreuw, Leticia González. Detailed wave function analysis for multireference methods: implementation in the Molcas program package and applications to tetracene. J. Chem. Theory Comput., 13(11):5343–5353, 2017. doi:10.1021/acs.jctc.7b00718.
[200]Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118(11):4775–4777, 2003. doi:10.1063/1.1558471.
[201]Felix Plasser, Michael Wormit, Andreas Dreuw. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys., 141(2):024106, 2014. doi:10.1063/1.4885819.
[202]Felix Plasser, Stefanie A. Bäppler, Michael Wormit, Andreas Dreuw. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys., 141(2):024107, 2014. doi:10.1063/1.4885820.
[203]Stefanie A. Bäppler, Felix Plasser, Michael Wormit, Andreas Dreuw. Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A, 90(5):052521, 2014. doi:10.1103/PhysRevA.90.052521.
[204]Felix Plasser, Benjamin Thomitzni, Stefanie A. Bäppler, Jan Wenzel, Dirk R. Rehn, Michael Wormit, Andreas Dreuw. Statistical analysis of electronic excitation processes: Spatial location, compactness, charge transfer, and electron-hole correlation. J. Comput. Chem., 36(21):1609–1620, 2015. doi:10.1002/jcc.23975.
[205]Felix Plasser, Hans Lischka. Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J. Chem. Theory Comput., 8(8):2777–2789, 2012. doi:10.1021/ct300307c.
[206]F. Plasser. TheoDORE: a package for theoretical density, orbital relaxation, and exciton analysis. URL:
[207]Martin Head-Gordon. Characterizing unpaired electrons from the one-particle density matrix. Chem. Phys. Letters, 372(3-4):508–511, 2003. doi:10.1016/S0009-2614(03)00422-6.
[208]Felix Plasser. Entanglement entropy of electronic excitations. J. Chem. Phys., 144(19):194107, 2016. doi:10.1063/1.4949535.
[209]Andrzej J. Sadlej. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect. Czech. Chem. Commun., 53:1995–2016, 1988. doi:10.1135/cccc19881995.
[210]Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. II. Second-row atoms: Si through Cl. Theor. Chim. Acta, 79:123–140, 1991. doi:10.1007/BF01127101.
[211]Andrzej J. Sadlej, Miroslav Urban. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali (li, na, k, rb) and alkaline-earth (be, mg, ca, sr) atoms. J. Mol. Struct. Theochem, 234:147–171, 1991. doi:10.1016/0166-1280(91)89010-X.
[212]Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. IV. Third-row atoms: Ge through Br. Theor. Chim. Acta, 81:45–63, 1991. doi:10.1007/BF01113377.
[213]Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. V. Fourth-row atoms: Sn through I. Theor. Chim. Acta, 81:339–354, 1992. doi:10.1007/BF01118573.
[214]Vladimir Kellö, Andrzej J. Sadlej. Estimates of relativistic contributions to molecular properties. J. Chem. Phys., 93:8122–8132, 1990. doi:10.1063/1.459342.
[215]Andrzej J. Sadlej, Miroslav Urban. Mutual dependence of relativistic and electron correlation contributions to molecular properties: The dipole moment of agh. Chem. Phys. Letters, 176:293–302, 1991. doi:10.1016/0009-2614(91)90033-6.
[216]Sigeru Huzinaga, Luis Seijo, Zoila Barandiarán, Mariusz Klobukowski. The \emph ab initio model potential method. Main group elements. J. Chem. Phys., 86:2132–2145, 1987. doi:10.1063/1.452111.
[217]Zoila Barandiarán, Luis Seijo. The \emph ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on nacl:cu$^+$. J. Chem. Phys., 89:5739–5746, 1988. doi:10.1063/1.455549.
[218]Zoila Barandiarán, Luis Seijo, Sigeru Huzinaga. The \emph ab initio model potential method. Second series transition metal elements. J. Chem. Phys., 93:5843–5850, 1990. doi:10.1063/1.459580.
[219]Christina Wittborn, Ulf Wahlgren. New relativistic effective core potentials for heavy elements. Chem. Phys., 201:357–362, 1995. doi:10.1016/0301-0104(95)00265-0.
[220]Frank Rakowitz, Christel M. Marian, Luis Seijo, Ulf Wahlgren. Spin-free relativistic no-pair \emph ab initio core model potentials and valence basis sets for the transition metal elements sc to hg. Part I. J. Chem. Phys., 110:3678–3686, 1999. doi:10.1063/1.478257.
[221]Frank Rakowitz, Christel M. Marian, Luis Seijo. Spin-free relativistic no-pair \emph ab initio core model potentials and valence basis sets for the transition metal elements sc to hg. II. J. Chem. Phys., 111:10436–10443, 1999. doi:10.1063/1.480398.
[222]Z. Barandiarán, L. Seijo. Local properties of imperfect crystals. In S. Fraga, editor, Computational Chemistry: Structure, Interactions and Reactivity, volume 77B of Studies in Physical and Theoretical Chemistry, pages 435–461. Elsevier, Amsterdam, Netherlands, 1992.
[223]James C. Phillips, Leonard Kleinman. New method for calculating wave functions in crystals and molecules. Phys. Rev., 116:287–294, 1959. doi:10.1103/PhysRev.116.287.
[224]S. Huzinaga, A. A. Cantu. Theory of separability of many-electron systems. J. Chem. Phys., 55:5543–5549, 1971. doi:10.1063/1.1675720.
[225]Sigeru Huzinaga, Dennis McWilliams, Antonio A. Cantu. Projection operators in Hartree–Fock theory. Adv. Quantum Chem., 7:187–220, 1973. doi:10.1016/S0065-3276(08)60562-6.
[226]José Luis Pascual, Luis Seijo, Zoila Barandiarán. Ab initio model potential study of environmental effects on the Jahn–Teller parameters of cu$^2+$ and ag$^2+$ impurities in mgo, cao, and sro hosts. J. Chem. Phys., 98:9715–9724, 1993. doi:10.1063/1.464350.
[227]M. Pelissier, N. Komiha, J.-P. Daudey. One-center expansion for pseudopotential matrix elements. J. Comput. Chem., 9:298–302, 1988. doi:10.1002/jcc.540090404.
[228]P. Jeffrey Hay, Willard R. Wadt. \emph Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms sc to hg. J. Chem. Phys., 82:270–283, 1985. doi:10.1063/1.448799.
[229]P. Jeffrey Hay, Willard R. Wadt. \emph Ab initio effective core potentials for molecular calculations. Potentials for main group elements na to bi. J. Chem. Phys., 82:284–298, 1985. doi:10.1063/1.448800.
[230]P. Jeffrey Hay, Willard R. Wadt. \emph Ab initio effective core potentials for molecular calculations. Potentials for k to au including the outermost core orbitals. J. Chem. Phys., 82:299–310, 1985. doi:10.1063/1.448975.
[231]Patricio Fuentealba, Heinzwerner Preuss, Hermann Stoll, László Von Szentpály. A proper account of core-polarization with pseudopotentials: Single valence-electron alkali compounds. Chem. Phys. Letters, 89:418–422, 1982. doi:10.1016/0009-2614(82)80012-2.
[232]P. Fuentealba, L. von Szentpály, H. Preuss, H. Stoll. Pseudopotential calculations for alkaline-earth atoms. J. Phys. B: At. Mol. Phys., 18:1287–1296, 1985. doi:10.1088/0022-3700/18/7/010.
[233]G. Igel-Mann, H. Stoll, H. Preuss. Pseudopotentials for main group elements (IIIa through VIIa). Mol. Phys., 65:1321–1328, 1988. doi:10.1080/00268978800101811.
[234]Andreas Bergner, Michael Dolg, Wolfgang Küchle, Hermann Stoll, Heinzwerner Preuß. \emph Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys., 80:1431–1441, 1993. doi:10.1080/00268979300103121.
[235]P. Fuentealba, H. Stoll, L. von Szentpály, P. Schwerdtfeger, H. Preuss. On the reliability of semi-empirical pseudopotentials: Simulation of Hartree–Fock and Dirac–Fock results. J. Phys. B: At. Mol. Phys., 16:L323–L328, 1983. doi:10.1088/0022-3700/16/11/001.
[236]M. Kaupp, P v. R. Schleyer, H. Stoll, H. Preuss. Pseudopotential approaches to ca, sr, and ba hydrides. Why are some alkaline earth mx$_2$ compounds bent? J. Chem. Phys., 94:1360–1366, 1991. doi:10.1063/1.459993.
[237]M. Dolg, U. Wedig, H. Stoll, H. Preuss. Energy-adjusted \emph ab initio pseudopotentials for the first row transition elements. J. Chem. Phys., 86:866–872, 1987. doi:10.1063/1.452288.
[238]Ulrich Wedig, Michael Dolg, Hermann Stoll, Heinzwerner Preuss. Energy-adjusted pseudopotentials for transition-metal elements. In A. Veillard, editor, Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, volume 176 of NATO ASI Series, pages 79–89. D. Reidel, Dordrecht, Netherlands, 1986. doi:10.1007/978-94-009-4656-9_6.
[239]László Von Szentpály, Patricio Fuentealba, Heinzwerner Preuss, Hermann Stoll. Pseudopotential calculations on rb$_2^+$, cs$_2^+$, rbh$^+$, csh$^+$ and the mixed alkali dimer ions. Chem. Phys. Letters, 93:555–559, 1982. doi:10.1016/0009-2614(82)83728-7.
[240]D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß. Energy-adjusted \emph ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 77:123–141, 1990. doi:10.1007/BF01114537.
[241]H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpály, H. Preuss. Cu and ag as one-valence-electron atoms: CI results and quadrupole corrections for cu$_2$, ag$_2$, cuh, and agh. J. Chem. Phys., 81:2732–2736, 1984. doi:10.1063/1.447992.
[242]W. Küchle, M. Dolg, H. Stoll, H. Preuss. \emph Ab initio pseudopotentials for hg through rn. I. Parameter sets and atomic calculations. Mol. Phys., 74:1245–1263, 1991. doi:10.1080/00268979100102941.
[243]Gudrun Igel-Mann. Semiempirische Pseudopotentiale; Untersuchungen an Hauptgruppenelementen und Nebengruppenelementen mit abgeschlossener d-Schale. PhD thesis, Universität Stuttgart, Institut für Theoretische Chemie, 1987. URL:
[244]M. Dolg, H. Stoll, H. Preuss. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta, 85:441–450, 1993. doi:10.1007/BF01112983.
[245]M. Dolg, H. Stoll, H. Preuss. Energy-adjusted \emph ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 90:1730–1734, 1989. doi:10.1063/1.456066.
[246]Michael Dolg, Peter Fulde, Wolfgang Küchle, Carl-Stefan Neumann, Hermann Stoll. Ground state calculations of di-π-cyclooctatetraene cerium. J. Chem. Phys., 94:3011–3017, 1991. doi:10.1063/1.459824.
[247]M. Dolg, H. Stoll, A. Savin, H. Preuss. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta, 75:173–194, 1989. doi:10.1007/BF00528565.
[248]Michael Dolg, Hermann Stoll, Heinz-Jüregn Flad, Heinzwerner Preuss. \emph Ab initio pseudopotential study of yb and ybo. J. Chem. Phys., 97:1162–1173, 1992. doi:10.1063/1.463244.
[249]Michael Dolg, Hermann Stoll, Heinzwerner Preuss, Russell M. Pitzer. Relativistic and correlation effects for element 105 (hahnium, ha): A comparative study of m and mo (m = nb, ta, ha) using energy-adjusted ab initio pseudopotentials. J. Phys. Chem., 97:5852–5859, 1993. doi:10.1021/j100124a012.
[250]Peter Schwerdtfeger, Michael Dolg, W. H. Eugen Schwarz, Graham A. Bowmaker, Peter D. W. Boyd. Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys., 91:1762–1774, 1989. doi:10.1063/1.457082.
[251]U. Häussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger, R. M. Pitzer. Accuracy of energy-adjusted quasirelativistic \emph ab initio pseudopotentials. All-electron and pseudopotential benchmark calculations for hg, hgh and their cations. Mol. Phys., 78:1211–1224, 1993. doi:10.1080/00268979300100801.
[252]W. Küchle, M. Dolg, H. Stoll, H. Preuss. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys., 100:7535–7542, 1994. doi:10.1063/1.466847.
[253]Andreas Nicklass, Michael Dolg, Hermann Stoll, Heinzwerner Preuss. \emph Ab initio energy-adjusted pseudopotentials for the noble gases ne through xe: Calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys., 102:8942–8952, 1995. doi:10.1063/1.468948.
[254]Thierry Leininger, Andreas Nicklass, Hermann Stoll, Michael Dolg, Peter Schwerdtfeger. The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of inh, inf, and incl. J. Chem. Phys., 105:1052–1059, 1996. doi:10.1063/1.471950.
[255]Xiaoyan Cao, Michael Dolg, Hermann Stoll. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys., 118:487–496, 2003. doi:10.1063/1.1521431.
[256]L. R. Kahn, W. A. Goddard, III. A direct test of the validity of the use of pseudopotentials in molecules. Chem. Phys. Letters, 2:667–670, 1968. doi:10.1016/0009-2614(63)80049-4.
[257]Phillip A. Christiansen, Yoon S. Lee, Kenneth S. Pitzer. Improved \emph ab initio effective core potentials for molecular calculations. J. Chem. Phys., 71:4445–4450, 1979. doi:10.1063/1.438197.
[258]Philippe Durand, Jean-Claude Barthelat. A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor. Chim. Acta, 38:283–302, 1975. doi:10.1007/BF00963468.
[259]Chris-Kriton Skylaris, Laura Gagliardi, Nicholas C. Handy, Andrew G. Ioannou, Steven Spencer, Andrew Willetts, Adrian M. Simper. An efficient method for calculating effective core potential integrals which involve projection operators. Chem. Phys. Letters, 296:445–451, 1998. doi:10.1016/S0009-2614(98)01077-X.
[260]Harry Partridge, Stephen R. Langhoff, Charles W. Bauschlicher, Jr. Electronic spectroscopy of diatomic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 209–260. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_6.
[261]Peter R. Taylor. Molecular symmetry and quantum chemistry. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 89–176. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_3.
[262]Margareta R. A. Blomberg, Per E. M. Siegbahn, Björn O. Roos. A theoretical study of nih optical spectrum and potential curves. Mol. Phys., 47:127–143, 1982. doi:10.1080/00268978200100092.
[263]Rosendo Pou-Amérigo, Manuela Merchán, Ignacio Nebot-Gil, Per-Åke Malmqvist, Björn O. Roos. The chemical bonds in cuh, cu$_2$, nih, and ni$_2$ studied with multiconfigurational second order perturbation theory. J. Chem. Phys., 101:4893–4902, 1994. doi:10.1063/1.467411.
[264]Kerstin Andersson, Björn O. Roos. Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory. Chem. Phys. Letters, 191:507–514, 1992. doi:10.1016/0009-2614(92)85581-T.
[265]Gerhard Herzberg. Molecular Spectra and Molecular Structure. Vol I. Spectra of Diatomic Molecules. D. Van Nostrand, Princeton, NJ, USA, 2nd edition, 1966.
[266]Peter R. Taylor. Accurate calculations and calibration. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 325–412. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_7.
[267]Remedios González-Luque, Manuela Merchán, Björn O. Roos. A theoretical determination of the dissociation energy of the nitric oxide dimer. Theor. Chim. Acta, 88:425–435, 1994. doi:10.1007/BF01113292.
[268]M. Perić, B. Engels, S. D. Peyerimhoff. Theoretical spectroscopy on small molecules: \emph Ab initio investigations of vibronic structure, spin–orbit splittings and magnetic hyperfine effects in the electronic spectra of triatomic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 261–356. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_7.
[269]Trygve Helgaker. Optimization of minima and saddle points. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 295–324. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_6.
[270]Mercedes Rubio, Manuela Merchán, Enrique Ortí, Björn O. Roos. A theoretical study of the electronic spectrum of naphthalene. Chem. Phys., 179:395–409, 1994. doi:10.1016/0301-0104(94)87016-0.
[271]Luis Serrano-Andrés, Manuela Merchán, Ignacio Nebot-Gil, Roland Lindh, Björn O. Roos. Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene. J. Chem. Phys., 98:3151–3162, 1993. doi:10.1063/1.465071.
[272]Luis Serrano-Andrés, Björn O. Roos. Theoretical study of the absorption and emission spectra of indole in the gas phase and in a solvent. J. Am. Chem. Soc., 118:185–195, 1996. doi:10.1021/ja952035i.
[273]Christopher S. Page, Manuela Merchán, Luis Serrano-Andrés, Massimo Olivucci. A theoretical study of the low-lying excited states of \emph trans- and \emph cis-urocanic acid. J. Phys. Chem. A, 103:9864–9871, 1999. doi:10.1021/jp991657d.
[274]Rosendo Pou-Amérigo, Manuela Merchán, Enrique Ortí. Theoretical study of the electronic spectrum of \emph p-benzoquinone. J. Chem. Phys., 110:9536–9546, 1999. doi:10.1063/1.478918.
[275]C. E. Blom, A. Bauder. Microwave spectrum, rotational constants and dipole moment of s-\emph cis acrolein. Chem. Phys. Letters, 88:55–58, 1982. doi:10.1016/0009-2614(82)80069-9.
[276]Vicent Molina, Manuela Merchán. Theoretical analysis of the electronic spectra of benzaldehyde. J. Phys. Chem. A, 105:3745–3751, 2001. doi:10.1021/jp004041t.
[277]Francis Ford, Tetsuro Yuzawa, Matthew S. Platz, Stephan Matzinger, Markus Fülscher. Rearrangement of dimethylcarbene to propene: Study by laser flash photolysis and \emph ab Initio molecular orbital theory. J. Am. Chem. Soc., 120:4430–4438, 1998. doi:10.1021/ja9724598.
[278]Timothy J. Lee, Peter R. Taylor. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem., 36-S23:199–207, 1989. doi:10.1002/qua.560360824.
[279]Timothy J. Lee, Gustavo E. Scuseria. Achieving chemical accuracy with coupled-cluster theory. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 47–108. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_2.
[280]S. Matzinger, M. P. Fülscher. Methyl substitution in carbenes. A theoretical prediction of the singlet–triplet energy separation of dimethylcarbene. J. Phys. Chem., 99:10747–10751, 1995. doi:10.1021/j100027a012.
[281]David J. Tozer, Roger D. Amos, Nicholas C. Handy, Björn O. Roos, Luis Serrano-Andrés. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol. Phys., 97:859–868, 1999. doi:10.1080/00268979909482888.
[282]Luis Serrano-Andrés, Markus P. Fülscher, Björn O. Roos, Manuela Merchán. Theoretical study of the electronic spectrum of imidazole. J. Phys. Chem., 100:6484–6491, 1996. doi:10.1021/jp952809h.
[283]Luis Serrano-Andrés. Estudio teórico del espectro electrónico de sistemas orgánicos. PhD thesis, Universitat de València, 1994. URL:
[284]Luis Serrano-Andrés, Manuela Merchán, Markus Fülscher, Björn O. Roos. A theoretical study of the electronic spectrum of thiophene. Chem. Phys. Letters, 211:125–134, 1993. doi:10.1016/0009-2614(93)80061-S.
[285]Karl Kaufmann, Werner Baumeister, Martin Jungen. Universal Gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions. J. Phys. B: At. Mol. Opt. Phys., 22:2223–2240, 1989. doi:10.1088/0953-4075/22/14/007.
[286]M. P. Fülscher, B. O. Roos. The excited states of pyrazine: A basis set study. Theor. Chim. Acta, 87:403–413, 1994. doi:10.1007/BF01113393.
[287]Kerstin Andersson. Multiconfigurational perturbation theory. PhD thesis, Lunds Universitet, 1992. URL:
[288]Markus P. Fülscher, Luis Serrano-Andrés, Björn O. Roos. A theoretical study of the electronic spectra of adenine and guanine. J. Am. Chem. Soc., 119:6168–6176, 1997. doi:10.1021/ja964426i.
[289]Luis Serrano-Andrés, Markus P. Fülscher. Theoretical study of the electronic spectroscopy of peptides. 1. The peptidic bond: Primary, secondary, and tertiary amides. J. Am. Chem. Soc., 118:12190–12199, 1996. doi:10.1021/ja961996+.
[290]Manuela Merchán, Enrique Ortí, Björn O. Roos. Theoretical determination of the electronic spectrum of free base porphin. Chem. Phys. Letters, 226:27–37, 1994. doi:10.1016/0009-2614(94)00681-4.
[291]Luis Serrano-Andrés, Björn O. Roos. A theoretical study of the indigoid dyes and their chromophore. Chem. Eur. J., 3:717–725, 1997. doi:10.1002/chem.19970030511.
[292]K. Pierloot, E. Van Praet, L. G. Vanquickenborne, B. O. Roos. Systematic ab initio study of the ligand field spectra of hexacyanometalate complexess. J. Phys. Chem., 97:12220–12228, 1993. doi:10.1021/j100149a021.
[293]Kristine Pierloot, Jan O. A. De Kerpel, Ulf Ryde, Björn O. Roos. Theoretical study of the electronic spectrum of plastocyanin. J. Am. Chem. Soc., 119:218–226, 1997. doi:10.1021/ja962381f.
[294]Kristine Pierloot, Eftimios Tsokos, Björn O. Roos. 3p–3d intershell correlation effects in transition metal ions. Chem. Phys. Letters, 214:583–590, 1993. doi:10.1016/0009-2614(93)85687-J.
[295]Manuela Merchán, Remedios González-Luque. \emph Ab initio study on the low-lying excited states of retinal. J. Chem. Phys., 106:1112–1122, 1997. doi:10.1063/1.473207.
[296]Luis Serrano-Andrés, Manuela Merchán, Björn O. Roos, Roland Lindh. Theoretical study of the internal charge transfer in aminobenzonitriles. J. Am. Chem. Soc., 117:3189–3204, 1995. doi:10.1021/ja00116a024.
[297]Manuela Merchán, Rosendo Pou-Amérigo, Björn O. Roos. A theoretical study of the dissociation energy of ni$_2^+$. A case of broken symmetry. Chem. Phys. Letters, 252:405–414, 1996. doi:10.1016/0009-2614(96)00105-4.
[298]M. P. Fülscher, S. Matzinger, T. Bally. Excited states in polyene radical cations. An ab initio theoretical study. Chem. Phys. Letters, 236:167–176, 1995. doi:10.1016/0009-2614(95)00208-L.
[299]Mercedes Rubio, Manuela Merchán, Enrique Ortí, Björn O. Roos. A theoretical study of the electronic spectra of the biphenyl cation and anion. J. Phys. Chem., 99:14980, 1995. doi:10.1021/j100041a011.
[300]Vincenzo Barone, Maurizio Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A, 102:1995–2001, 1998. doi:10.1021/jp9716997.
[301]Maurizio Cossi, Nadia Rega, Giovanni Scalmani, Vincenzo Barone. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys., 114:5691–5701, 2001. doi:10.1063/1.1354187.
[302]Gunnar Karlström. New approach to the modeling of dielectric media effects in ab initio quantum chemical calculations. J. Phys. Chem., 92:1315–1318, 1988. doi:10.1021/j100316a060.
[303]Luis Serrano-Andrés, Markus P. Fülscher, Gunnar Karlström. Solvent effects on electronic spectra studied by multiconfigurational perturbation theory. Int. J. Quantum Chem., 65:167–181, 1997. doi:10.1002/(SICI)1097-461X(1997)65:2<167::AID-QUA8>3.0.CO;2-U.
[304]Jacopo Tomasi, Maurizio Persico. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev., 94:2027–2094, 1994. doi:10.1021/cr00031a013.
[305]Maurizio Cossi, Vincenzo Barone. Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys., 112:2427–2435, 2000. doi:10.1063/1.480808.
[306]Anders Bernhardsson, Roland Lindh, Gunnar Karlström, Björn O. Roos. Direct self-consistent reaction field with Pauli repulsion: Solvation effects on methylene peroxide. Chem. Phys. Letters, 251:141–149, 1996. doi:10.1016/0009-2614(96)00127-3.
[307]W. F. Forbes, R. Shilton. Electronic spectra and molecular dimensions. III. Steric effects in methyl-substituted α,β-unsaturated aldehydes. J. Am. Chem. Soc., 81:786–790, 1959. doi:10.1021/ja01513a006.
[308]Marvin Douglas, Norman M. Kroll. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys., 82:89–155, 1974. doi:10.1016/0003-4916(74)90333-9.
[309]Bernd A. Hess. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A, 33:3742–3748, 1986. doi:10.1103/PhysRevA.33.3742.
[310]Per-Åke Malmqvist, Björn O. Roos, Bernd Schimmelpfennig. The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Letters, 357:230–240, 2002. doi:10.1016/S0009-2614(02)00498-0.
[311]Bernd A. Heß, Christel M. Marian, Ulf Wahlgren, Odd Gropen. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Letters, 251:365–371, 1996. doi:10.1016/0009-2614(96)00119-4.
[312]B. Schimmelpfennig. Amfi, an atomic mean-field spin-orbit integral program. Computer code, 1996. University of Stockholm.
[313]Björn O. Roos, Per-Åke Malmqvist. On the effects of spin–orbit coupling on molecular properties: Dipole moment and polarizability of pbo and spectroscopic constants for the ground and excited states. Adv. Quantum Chem., 47:37–49, 2004. doi:10.1016/S0065-3276(04)47003-8.
[314]Ulf Wahlgren. The effective core potential method. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 413–421. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_8.
[315]Luis Seijo, Zoila Barandiarán. The \emph Ab Initio model potential method: A common strategy for effective core potential and embedded cluster calculations. In Jerzy Leszczynski, editor, Computational Chemistry: Reviews of Current Trends, volume 4, pages 55–152. World Scientific, Singapore, 1999. doi:10.1142/9789812815156_0002.