Bibliography

1

Giovanni Li Manni, Simon D. Smart, Ali Alavi. Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins. J. Chem. Theory Comput., 12 (2016) 1245–1258. doi:10.1021/acs.jctc.5b01190.

2

Giovanni Li Manni, Ali Alavi. Understanding the mechanism stabilizing intermediate spin states in \(\ce {Fe(II)}\)-porphyrin. J. Phys. Chem. A, 122[22] (2018) 4935–4947. doi:10.1021/acs.jpca.7b12710.

3

Giovanni Li Manni, Daniel Kats, David P. Tew, Ali Alavi. Role of valence and semicore electron correlation on spin gaps in \(\ce {Fe(II)}\)-porphyrins. J. Chem. Theory Comput., 15 (2019) 1492–1497. doi:10.1021/acs.jctc.8b01277.

4

Björn O. Roos, Valera Veryazov, Per-Olof Widmark. Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor. Chem. Acc., 111 (2004) 345–351. doi:10.1007/s00214-003-0537-0.

5

Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A, 108 (2004) 2851–2858. doi:10.1021/jp031064+.

6

Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A, 109 (2005) 6575–6579. doi:10.1021/jp0581126.

7

Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark. New relativistic ANO basis sets for actinide atoms. Chem. Phys. Lett., 409 (2005) 295–299. doi:10.1016/j.cplett.2005.05.011.

8

Björn O. Roos, Roland Lindh, Per-Åke Malmqvist, Valera Veryazov, Per-Olof Widmark, Antonio Carlos Borin. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the \(\ce {Ce}\) diatom and \(\ce {LuF3}\). J. Phys. Chem. A, 112 (2008) 11431–11435. doi:10.1021/jp803213j.

9

Björn O. Roos, Per-Åke Malmqvist, Laura Gagliardi. Heavy element quantum chemistry – the multiconfigurational approach. In Erkki J. Brändas, Eugene S. Kryachko, editors, Fundamental World of Quantum Chemistry. Vol. II, pages 425–442. Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

10

Francesco Aquilante, Roland Lindh, Thomas Bondo Pedersen. Unbiased auxiliary basis sets for accurate two-electron integral approximations. J. Chem. Phys., 127 (2007) 114107(1–7). doi:10.1063/1.2777146.

11

Francesco Aquilante, Per-Åke Malmqvist, Thomas Bondo Pedersen, Abhik Ghosh, Björn O. Roos. Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): Application to the spin-state energetics of \(\ce {Co^{III}(diiminato)(NPh)}\). J. Chem. Theory Comput., 4 (2008) 694–702. doi:10.1021/ct700263h.

12

Francesco Aquilante, Thomas Bondo Pedersen, Björn O. Roos, Alfredo Sánchez de Merás, Henrik Koch. Accurate ab initio density fitting for multiconfigurational self-consistent field methods. J. Chem. Phys., 129 (2008) 024113(1–8). doi:10.1063/1.2953696.

13

Quan Manh Phung, Sebastian Wouters, Kristine Pierloot. Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: A benchmark study. J. Chem. Theory Comput., 12[9] (2016) 4352–4361. doi:10.1021/acs.jctc.6b00714.

14

Sebastian Wouters, Veronique Van Speybroeck, Dimitri Van Neck. DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes. J. Chem. Phys., 145[5] (2016) 054120. doi:10.1063/1.4959817.

15

Naoki Nakatani, Sheng Guo. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations. J. Chem. Phys., 146[9] (2017) 094102. doi:10.1063/1.4976644.

16

Sandeep Sharma, Adam A. Holmes, Guillaume Jeanmairet, Ali Alavi, Cyrus J. Umrigar. Semistochastic heat-bath configuration interaction method: selected configuration interaction with semistochastic perturbation theory. J. Chem. Theory Comput., 13[4] (2017) 1595–1604. doi:10.1021/acs.jctc.6b01028.

17

Adam A. Holmes, Norm M. Tubman, C. J. Umrigar. Heat-bath configuration interaction: an efficient selected configuration interaction algorithm inspired by heat-bath sampling. J. Chem. Theory Comput., 12[8] (2016) 3674–3680. doi:10.1021/acs.jctc.6b00407.

18

Dongxia Ma, Giovanni Li Manni, Laura Gagliardi. The generalized active space concept in multiconfigurational self-consistent field methods. J. Chem. Phys., 135 (2011) 044128. doi:10.1063/1.3611401.

19

Björn O. Roos. The multiconfigurational (MC) self-consistent field (SCF) theory. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 177–254. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_4.

20

James Finley, Per-Åke Malmqvist, Björn O. Roos, Luis Serrano-Andrés. The multi-state CASPT2 method. Chem. Phys. Lett., 288 (1998) 299–306. doi:10.1016/S0009-2614(98)00252-8.

21

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu. Introduction of \(n\)-electron valence states for multireference perturbation theory. J. Chem. Phys., 114 (2001) 10252. doi:10.1063/1.1361246.

22

Celestino Angeli, Renzo Cimiraglia, Jean-Paul Malrieu. \(N\)-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett., 350 (2001) 297–305. doi:10.1016/S0009-2614(01)01303-3.

23

Celestino Angeli, Renzo Cimiraglia, Jean-Paul Malrieu. \(n\)-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys., 117 (2002) 9138–9153. doi:10.1063/1.1515317.

24

Celestino Angeli, Stefano Borini, Mirko Cestari, Renzo Cimiraglia. A quasidegenerate formulation of the second order \(n\)-electron valence state perturbation theory approach. J. Chem. Phys., 121 (2004) 4043–4049. doi:10.1063/1.1778711.

25

Kenneth G. Dyall. The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J. Chem. Phys., 102 (1995) 4909–4918. doi:10.1063/1.469539.

26

Leon Freitag, Stefan Knecht, Celestino Angeli, Markus Reiher. Multireference perturbation theory with Cholesky decomposition for the density matrix renormalization group. J. Chem. Theory Comput., 13 (2017) 451–459. doi:10.1021/acs.jctc.6b00778.

27

John D. Watts, Jürgen Gauss, Rodney J. Bartlett. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. J. Chem. Phys., 98 (1993) 8718–8733. doi:10.1063/1.464480.

28

Pavel Neogrády, Miroslav Urban. Spin-adapted restricted Hartree–Fock reference coupled-cluster theory for open-shell systems: Noniterative triples for noncanonical orbitals. Int. J. Quantum Chem., 55 (1995) 187–203. doi:10.1002/qua.560550214.

29

Roland Lindh. The reduced multiplication scheme of the Rys–Gauss quadrature for 1st order integral derivatives. Theor. Chim. Acta, 85 (1993) 423–440. doi:10.1007/BF01112982.

30

Shervin Fatehi, Joseph E. Subotnik. Derivative couplings with built-in electron-translation factors: Application to benzene. J. Phys. Chem. Lett., 3[15] (2012) 2039–2043. doi:10.1021/jz3006173.

31

Michael Stenrup, Roland Lindh, Ignacio Fdez. Galván. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization. J. Comput. Chem., 36[22] (2015) 1698–1708. doi:10.1002/jcc.23987.

32

Kerstin Andersson, Per-Åke Malmqvist, Björn O. Roos, Andrzej Sadlej, Krzysztof Wolinski. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem., 94 (1990) 5483–5486. doi:10.1021/j100377a012.

33

Kerstin Andersson, Per-Åke Malmqvist, Björn O. Roos. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys., 96 (1992) 1218–1226. doi:10.1063/1.462209.

34

Per Åke Malmqvist, Kristine Pierloot, Abdul Rehaman Moughal Shahi, Christopher J. Cramer, Laura Gagliardi. The restricted active space followed by second-order perturbation theory method: Theory and application to the study of \(\ce {CuO2}\) and \(\ce {Cu2O2}\) systems. J. Chem. Phys., 128 (2008) 204109(1–10). doi:10.1063/1.2920188.

35

Vicenta Sauri, Luis Serrano-Andrés, Abdul Rehaman Moughal Shahi, Laura Gagliardi, Steven Vancoillie, Kristine Pierloot. Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: A benchmark study. J. Chem. Theory Comput., 7 (2011) 153–168. doi:10.1021/ct100478d.

36

Björn O. Roos, Markus P. Fülscher, Per-Åke Malmqvist, Manuela Merchán, Luis Serrano-Andrés. Theoretical studies of the electronic spectra of organic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 357–438. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_8.

37

Björn O. Roos, Kerstin Andersson, Markus P. Fülscher, Per-Åke Malmqvist, Luis Serrano-Andrés, Kristine Pierloot, Manuela Merchán. Multiconfigurational perturbation theory: Applications in electronic spectroscopy. In I. Prigogine, Stuart A. Rice, editors, New Methods in Computational Quantum Mechanics, volume 93 of Advances in Chemical Physics, pages 213–331. John Wiley & Sons, Hoboken, NJ, USA, 1996. doi:10.1002/9780470141526.ch5.

38

Kerstin Andersson, Björn O. Roos. Multiconfigurational second-order perturbation theory: A test of geometries and binding energies. Int. J. Quantum Chem., 45 (1993) 591–607. doi:10.1002/qua.560450610.

39

Giovanni Ghigo, Björn O. Roos, Per-Åke Malmqvist. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett., 396 (2004) 142–149. doi:10.1016/j.cplett.2004.08.032.

40

K. Andersson. Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor. Chim. Acta, 91 (1995) 31–46. doi:10.1007/BF01113860.

41

Yoshio Nishimoto. Analytic gradients for restricted active space second-order perturbation theory (RASPT2). J. Chem. Phys., 154[19] (2021) 194103. doi:10.1063/5.0050074.

42

Yoshio Nishimoto, Stefano Battaglia, Roland Lindh. Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods. J. Chem. Theory Comput., 18[7] (2022) 4269–4281. doi:10.1021/acs.jctc.2c00301.

43

Björn O. Roos, Kerstin Andersson. Multiconfigurational perturbation theory with level shift — the \(\ce {Cr2}\) potential revisited. Chem. Phys. Lett., 245 (1995) 215–223. doi:10.1016/0009-2614(95)01010-7.

44

Björn O. Roos, Kerstin Andersson, Markus P. Fülscher, Luis Serrano-Andrés, Kristine Pierloot, Manuela Merchán, Vicent Molina. Applications of level shift corrected perturbation theory in electronic spectroscopy. J. Mol. Struct. Theochem, 388 (1996) 257–276. doi:10.1016/S0166-1280(96)80039-X.

45

Stefano Battaglia, Lina Fransén, Ignacio Fdez. Galván, Roland Lindh. Regularized CASPT2: an intruder-state-free approach. J. Chem. Theory Comput., 18[8] (2022) 4814–4825. doi:10.1021/acs.jctc.2c00368.

46

Niclas Forsberg, Per-Åke Malmqvist. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett., 274 (1997) 196–204. doi:10.1016/S0009-2614(97)00669-6.

47

A. A. Granovsky. Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. J. Chem. Phys., 134 (2011) 214113. doi:10.1063/1.3596699.

48

T. Shiozaki, W. Győrffy, P. Celani, H.-J. Werner. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys., 135 (2011) 081106. doi:10.1063/1.3633329.

49

Stefano Battaglia, Roland Lindh. Extended dynamically weighted CASPT2: the best of two worlds. J. Chem. Theory Comput., 16[3] (2020) 1555–1567. doi:10.1021/acs.jctc.9b01129.

50

Stefano Battaglia, Roland Lindh. On the role of symmetry in XDW-CASPT2. J. Chem. Phys., 154 (2021) 034102. doi:10.1063/5.0030944.

51

Thorstein Thorsteinsson, David L. Cooper, Joseph Gerratt, Peter B. Karadakov, Mario Raimondi. Modern valence bond representations of CASSCF wavefunctions. Theor. Chim. Acta, 93 (1996) 343–366. doi:10.1007/BF01129215.

52

David L. Cooper, Thorstein Thorsteinsson, Joseph Gerratt. Fully variational optimization of modern VB wave functions using the CASVB strategy. Int. J. Quantum Chem., 65 (1997) 439–451. doi:10.1002/(SICI)1097-461X(1997)65:5<439::AID-QUA8>3.0.CO;2-X.

53

David L. Cooper, Thorstein Thorsteinsson, Joseph Gerratt. Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy. Adv. Quantum Chem., 32 (1998) 51–67. doi:10.1016/S0065-3276(08)60406-2.

54

T. Thorsteinsson, D. L. Cooper. An overview of the CASVB approach to modern valence bond calculations. In Alfonso Hernández-Laguna, Jean Maruani, Roy McWeeny, Stephen Wilson, editors, Quantum Systems in Chemistry and Physics. Vol. 1: Basic problems and models systems, pages 303–326. Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.

55

Thorstein Thorsteinsson, David L. Cooper. Modern valence bond descriptions of molecular excited states: An application of CASVB. Int. J. Quantum Chem., 70 (1998) 637–650. doi:10.1002/(SICI)1097-461X(1998)70:4/5<637::AID-QUA10>3.0.CO;2-%23.

56

Thorstein Thorsteinsson, David L. Cooper, Joseph Gerratt, Mario Raimondi. Symmetry adaptation and the utilization of point group symmetry in valence bond calculations, including CASVB. Theor. Chim. Acta, 95 (1997) 131–150. doi:10.1007/BF02341697.

57

Thorstein Thorsteinsson, David L. Cooper. Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB. J. Math. Chem., 23 (1998) 105–106. doi:10.1023/A:1019100703879.

58

Guido Raos, Joseph Gerratt, David L. Cooper, Mario Raimondi. Spin correlation in \({\pi }\)-electron systems from spin-coupled wavefunctions. I. Theory and first applications. Chem. Phys., 186 (1994) 233–250. doi:10.1016/0301-0104(94)00177-4.

59

Guido Raos, Joseph Gerratt, David L. Cooper, Mario Raimondi. Spin correlation in \({\pi }\)-electron systems from spin-coupled wavefunctions. II. Further applications. Chem. Phys., 186 (1994) 251–273. doi:10.1016/0301-0104(94)00178-2.

60

David L. Cooper, Robert Ponec, Thorstein Thorsteinsson, Guido Raos. Pair populations and effective valencies from ab initio SCF and spin-coupled wave functions. Int. J. Quantum Chem., 57 (1996) 501–518. doi:10.1002/(SICI)1097-461X(1996)57:3<501::AID-QUA24>3.0.CO;2-4.

61

B. H. Chirgwin, C. A. Coulson. The electronic structure of conjugated systems. VI. Proc. Roy. Soc. Lond. A, 201 (1950) 196–209. doi:10.1098/rspa.1950.0053.

62

G. A. Gallup, J. M. Norbeck. Population analyses of valence-bond wavefunctions and \(\ce {BeH2}\). Chem. Phys. Lett., 21 (1973) 495–500. doi:10.1016/0009-2614(73)80292-1.

63

Pavel Neogrády, Miroslav Urban, Ivan Hubač. Spin adapted restricted Hartree–Fock reference coupled cluster theory for open shell systems. J. Chem. Phys., 100 (1994) 3706–3716. doi:10.1063/1.466359.

64

Pavel Neogrády, Miroslav Urban, Ivan Hubač. Spin adapted restricted open shell coupled cluster theory. Linear version. J. Chem. Phys., 97 (1992) 5074–5080. doi:10.1063/1.463828.

65

Peter J. Knowles, Claudia Hampel, Hans-Joachim Werner. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys., 99 (1993) 5219–5227. doi:10.1063/1.465990.

66

Miroslav Urban, Jozef Noga, Samuel J. Cole, Rodney J. Bartlett. Towards a full CCSDT model for electron correlation. J. Chem. Phys., 83 (1985) 4041–4046. doi:10.1063/1.449067.

67

Krishnan Raghavachari, Gary W. Trucks, John A. Pople, Martin Head-Gordon. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett., 157 (1989) 479–483. doi:10.1016/S0009-2614(89)87395-6.

68

Reinhart Ahlrichs, Peter Scharf, Claus Ehrhardt. The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional. J. Chem. Phys., 82 (1985) 890–898. doi:10.1063/1.448517.

69

Delano P. Chong, Stephen R. Langhoff. A modified coupled pair functional approach. J. Chem. Phys., 84 (1986) 5606–5610. doi:10.1063/1.449920.

70

Robert J. Gdanitz, Reinhart Ahlrichs. The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD). Chem. Phys. Lett., 143 (1988) 413–420. doi:10.1016/0009-2614(88)87388-3.

71

B. Roos. A new method for large-scale CI calculations. Chem. Phys. Lett., 15 (1972) 153–159. doi:10.1016/0009-2614(72)80140-4.

72

Isaiah Shavitt. Graph theoretical concepts for the unitary group approach to the many-electron correlation problem. Int. J. Quantum Chem., 12-S11 (1977) 131–148. doi:10.1002/qua.560120819.

73

Isaiah Shavitt. Matrix element evaluation in the unitary group approach to the electron correlation problem. Int. J. Quantum Chem., 14-S12 (1978) 5–32. doi:10.1002/qua.560140803.

74

Per E. M. Siegbahn. Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations. J. Chem. Phys., 72 (1980) 1647–1656. doi:10.1063/1.439365.

75

S. Keller, M. Dolfi, M. Troyer, M. Reiher. An efficient matrix product operator representation of the quantum-chemical Hamiltonian. J. Chem. Phys., 143 (2015) 244118. doi:10.1063/1.4939000.

76

S. Keller, M. Reiher. Spin-adapted matrix product states and operators. J. Chem. Phys., 144 (2016) 134101. doi:10.1063/1.4944921.

77

S. Knecht, E. D. Hedegård, S. Keller, A. Kovyrshin, Y. Ma, A. Muolo, C. J. Stein, M. Reiher. New approaches for ab initio calculations of molecules with strong electron correlation. Chimia, 70 (2016) 244–251. doi:10.2533/chimia.2016.244.

78

William C. Swope, Hans C. Andersen, Peter H. Berens, Kent R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys., 76 (1982) 637–649. doi:10.1063/1.442716.

79

I. V. Abarenkov. Unit cell for a lattice electrostatic potential. Phys. Rev. B, 76 (2007) 165127(1–18). doi:10.1103/PhysRevB.76.165127.

80

Peter V. Sushko, Igor V. Abarenkov. General purpose electrostatic embedding potential. J. Chem. Theory Comput., 6 (2010) 1323–1333. doi:10.1021/ct900480p.

81

Alessio Valentini, Daniel Rivero, Felipe Zapata, Cristina García-Iriepa, Marco Marazzi, Raúl Palmeiro, Ignacio Fdez. Galván, Diego Sampedro, Massimo Olivucci, Luis Manuel Frutos. Optomechanical control of quantum yield in transcis ultrafast photoisomerization of a retinal chromophore model. Angew. Chem. Int. Ed., 56[14] (2017) 3842–3846. doi:10.1002/anie.201611265.

82

A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys., 12 (1967) 107–142. doi:10.1002/9780470143582.ch2.

83

Florian Weigend. Hartree–Fock exchange fitting basis sets for \(\ce {H}\) to \(\ce {Rn}\). J. Comput. Chem., 29[2] (2008) 167–175. doi:10.1002/jcc.20702.

84

Rulin Feng, Thomas J. Duignan, Jochen Autschbach. Electron-nucleus hyperfine coupling calculated from restricted active space wavefunctions and an exact two-component Hamiltonian. J. Chem. Theory Comput., 17 (2021) 255–268. doi:10.1021/acs.jctc.0c01005.

85

Jorge M. del Campo, Andreas M. Köster. A hierarchical transition state search algorithm. J. Chem. Phys., 129 (2008) 024107(1–12). doi:10.1063/1.2950083.

86

Richard C. Raffenetti. General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; molecular integral evaluation. J. Chem. Phys., 58 (1973) 4452–4458. doi:10.1063/1.1679007.

87

Jan Almlöf, Peter R. Taylor. General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. J. Chem. Phys., 86 (1987) 4070–4077. doi:10.1063/1.451917.

88

Per-Olof Widmark, Per-Åke Malmqvist, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. I. First row atoms. Theor. Chim. Acta, 77 (1990) 291. doi:10.1007/BF01120130.

89

Per-Olof Widmark, B. Joakim Persson, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. II. Second row atoms. Theor. Chim. Acta, 79 (1991) 419–432. doi:10.1007/BF01112569.

90

Rosendo Pou-Amérigo, Manuela Merchán, Ignacio Nebot-Gil, Per-Olof Widmark, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. III. First row transition metal atoms. Theor. Chim. Acta, 92 (1995) 149–181. doi:10.1007/BF01114922.

91

Kristine Pierloot, Birgit Dumez, Per-Olof Widmark, Björn O. Roos. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms \(\ce {H}\)\(\ce {Kr}\). Theor. Chim. Acta, 90 (1995) 87–114. doi:10.1007/BF01113842.

92

Victor P. Vysotskiy, Jonas Boström, Valera Veryazov. A new module for constrained multi-fragment geometry optimization in internal coordinates implemented in the MOLCAS package. J. Comput. Chem., 34 (2013) 2657–2665. doi:10.1002/jcc.23428.

93

Yubin Wang, Gaohong Zhai, Binbin Suo, Zhengting Gan, Zhenyi Wen. Hole–particle correspondence in CI calculations. Chem. Phys. Lett., 375 (2003) 134–140. doi:10.1016/S0009-2614(03)00849-2.

94

Bing Suo, Gaohong Zhai, Yubin Wang, Zhenyi Wen, Xiangqian Hu, Lemin Li. Parallelization of MRCI based on hole–particle symmetry. J. Comput. Chem., 26 (2005) 88–96. doi:10.1002/jcc.20148.

95

János Pipek, Paul G. Mezey. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys., 90 (1989) 4916–4926. doi:10.1063/1.456588.

96

S. F. Boys. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys., 32 (1960) 296–299. doi:10.1103/RevModPhys.32.296.

97

J. M. Foster, S. F. Boys. Canonical configurational interaction procedure. Rev. Mod. Phys., 32 (1960) 300–302. doi:10.1103/RevModPhys.32.300.

98

Clyde Edmiston, Klaus Ruedenberg. Localized atomic and molecular orbitals. Rev. Mod. Phys., 35 (1963) 457–465. doi:10.1103/RevModPhys.35.457.

99

Francesco Aquilante, Thomas Bondo Pedersen, Alfredo Sánchez de Merás, Henrik Koch. Fast noniterative orbital localization for large molecules. J. Chem. Phys., 125 (2006) 174101(1–7). doi:10.1063/1.2360264.

100

Joseph E. Subotnik, Yihan Shao, WanZhen Liang, Martin Head-Gordon. An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals. J. Chem. Phys., 121 (2004) 9220–9229. doi:10.1063/1.1790971.

101

Laura Gagliardi, Roland Lindh, Gunnar Karlström. Local properties of quantum chemical systems: The LoProp approach. J. Chem. Phys., 121 (2004) 4494–4500. doi:10.1063/1.1778131.

102

Anders Bernhardsson, Roland Lindh, Jeppe Olsen, Markus Fülscher. A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation. Mol. Phys., 96 (1999) 617–628. doi:10.1080/00268979909482998.

103

Jonna Stålring, Anders Bernhardsson, Roland Lindh. Analytical gradients of a state average MCSCF state and a state average diagnostic. Mol. Phys., 99 (2001) 103–114. doi:10.1080/002689700110005642.

104

Jeppe Olsen, Björn O. Roos, Poul Jørgensen, Hans Jørgen Aa. Jensen. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. J. Chem. Phys., 89 (1988) 2185–2192. doi:10.1063/1.455063.

105

Giovanni Li Manni, Rebecca K. Carlson, Sijie Luo, Dongxia Ma, Jeppe Olsen, Donald G. Truhlar, Laura Gagliardi. Multi-configuration pair-density functional theory. J. Chem. Theory Comput., 10 (2014) 3669–3680. doi:10.1021/ct500483t.

106

Rebecca K. Carlson, Giovanni Li Manni, Andrew L. Sonnenberger, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration pair-density functional theory: Barrier heights and main group and transition metal energetics. J. Chem. Theory Comput., 11 (2015) 82–90. doi:10.1021/ct5008235.

107

Rebecca K. Carlson, Donald G. Truhlar, Laura Gagliardi. Multiconfiguration pair-density functional theory: A fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of \(\ce {Re2Cl8^{2-}}\). J. Chem. Theory Comput., 11[9] (2015) 4077. doi:10.1021/acs.jctc.5b00609.

108

S. Knecht, S. Keller, J. Autschbach, M. Reiher. A nonorthogonal state-interaction approach for matrix product state wave functions. J. Chem. Theory Comput., 12 (2016) 5881–5894. doi:10.1021/acs.jctc.6b00889.

109

Per-Åke Malmqvist, Björn O. Roos. The CASSCF state interaction method. Chem. Phys. Lett., 155 (1989) 189–194. doi:10.1016/0009-2614(89)85347-3.

110

Philip W. Anderson. New approach to the theory of superexchange interactions. Phys. Rev., 115[1] (1959) 2–13. doi:10.1103/PhysRev.115.2.

111

Philip W. Anderson. Theory of magnetic exchange interactions: Exchange in insulators and semiconductors. In Frederick Seitz, David Turnbull, editors, Solid State Physics, volume 14, pages 99–214. Academic Press, 1963. doi:10.1016/S0081-1947(08)60260-X.

112

M. E. Lines. Orbital angular momentum in the theory of paramagnetic clusters. J. Chem. Phys., 55[6] (1971) 2977–2984. doi:10.1063/1.1676524.

113

A. Wallqvist, P. Ahlström, G. Karlström. New intermolecular energy calculation scheme: Applications to potential surface and liquid properties of water. J. Phys. Chem., 94 (1990) 1649–1656. doi:10.1021/j100367a078.

114

Nigel W. Moriarty, Gunnar Karlström. Electronic polarization of a water molecule in water. A combined quantum chemical and statistical mechanical treatment. J. Phys. Chem., 100 (1996) 17791–17796. doi:10.1021/jp9614761.

115

Anders Öhrn, Gunnar Karlström. A theoretical study of the solvent shift to the \(n \to \pi ^*\) transition in formaldehyde with an effective discrete quantum chemical solvent model including non-electrostatic perturbation. Mol. Phys., 104 (2006) 3087–3099. doi:10.1080/00268970600965629.

116

Anders Öhrn, Francesco Aquilante. P-benzoquinone in aqueous solution: Stark shifts in spectra, asymmetry in solvent structure. Phys. Chem. Chem. Phys., 9 (2007) 470–480. doi:10.1039/B613833K.

117

Anders Öhrn. Development and Application of a First Principle Molecular Model for Solvent Effects. PhD thesis, Lunds Universitet, Theor. Chemistry, Chem. Center, P.O.B. 124,S-221 00 Lund, Sweden, 2008. URL: http://www.lu.se/lup/publication/599170.

118

Björn O. Roos, Peter R. Taylor, Per E. M. Siegbahn. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys., 48 (1980) 157–173. doi:10.1016/0301-0104(80)80045-0.

119

Björn O. Roos. The complete active space self-consistent field method and its applications in electronic structure calculations. In K. P. Lawley, editor, Ab Initio Methods in Quantum Chemistry Part II, volume 69 of Advances in Chemical Physics, pages 399–445. John Wiley & Sons, Hoboken, NJ, USA, 1987. doi:10.1002/9780470142943.ch7.

120

Per-Åke Malmqvist, Alistair Rendell, Björn O. Roos. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem., 94 (1990) 5477–5482. doi:10.1021/j100377a011.

121

Björn O. Roos. The complete active space SCF method in a Fock-matrix-based super-CI formulation. Int. J. Quantum Chem., 18-S14 (1980) 175–189. doi:10.1002/qua.560180822.

122

George H. Booth, Alex J. W. Thom, Ali Alavi. Fermion Monte Carlo without fixed nodes: A game of life, death and annihilation in Slater determinant space. J. Chem. Phys., 131 (2009) 054106. doi:10.1063/1.3193710.

123

Catherine Overy, George H. Booth, N. S. Blunt, James J. Shepherd, Deidre Cleland, Ali Alavi. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo. J. Chem. Phys., 141 (2014) 244117. doi:10.1063/1.4904313.

124

T. P. Straatsma, R. Broer, A. Sánchez-Mansilla, C. Sousa, C. de Graaf. GronOR: scalable and accelerated nonorthogonal configuration interaction for molecular fragment wave functions. J. Chem. Theory Comput., 18 (2022) 3549–3565. doi:10.1021/acs.jctc.2c00266.

125

Attila Szabo, Neil S. Ostlund. Modern Quantum Chemistry. McGraw-Hill, New York, NY, USA, 1989.

126

Francesco Aquilante, Thomas Bondo Pedersen, Roland Lindh. Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J. Chem. Phys., 126 (2007) 194106(1–11). doi:10.1063/1.2736701.

127

Per-Åke Malmqvist. Calculation of transition density matrices by nonunitary orbital transformations. Int. J. Quantum Chem., 30 (1986) 479–494. doi:10.1002/qua.560300404.

128

Per Åke Malmqvist, Valera Veryazov. The binatural orbitals of electronic transitions. Mol. Phys., 110[19-20] (2012) 2455–2464. doi:10.1080/00268976.2012.697587.

129

Steven Vancoillie, Per-Åke Malmqvist, Kristine Pierloot. Calculation of EPR \(g\) tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). ChemPhysChem, 8 (2007) 1803–1815. doi:10.1002/cphc.200700128.

130

Steven Vancoillie, Lubomír Rulíšek, Frank Neese, Kristine Pierloot. Theoretical description of the structure and magnetic properties of nitroxide–Cu(II)–nitroxide spin triads by means of multiconfigurational ab initio calculations. J. Phys. Chem. A, 113 (2009) 6149–6157. doi:10.1021/jp900822v.

131

Chad E. Hoyer, Xuefei Xu, Dongxia Ma, Laura Gagliardi, Donald G. Truhlar. Diabatization based on the dipole and quadrupole: The DQ method. J. Chem. Phys., 141[11] (2014) 114104. doi:10.1063/1.4894472.

132

Joseph E. Subotnik, Sina Yeganeh, Robert J. Cave, Mark A. Ratner. Constructing diabatic states from adiabatic states: extending generalized Mulliken–Hush to multiple charge centers with Boys localization. J. Chem. Phys., 129[24] (2008) 244101. doi:10.1063/1.3042233.

133

Bruno Nunes Cabral Tenorio, Aurora Ponzi, Sonia Coriani, Piero Decleva. Photoionization observables from multi-reference Dyson orbitals coupled to B-spline DFT and TD-DFT continuum. Molecules, 27 (2022) 1203. doi:10.3390/molecules27041203.

134

Bruno Nunes Cabral Tenorio, Piero Decleva, Sonia Coriani. Multi-reference approach to the computation of double core-hole spectra. J. Chem. Phys., 155[13] (2021) 131101. doi:10.1063/5.0062130.

135

Bruno Nunes Cabral Tenorio, Torben Arne Voss, Sergey I. Bokarev, Piero Decleva, Sonia Coriani. Multireference approach to normal and resonant Auger spectra based on the one-center approximation. J. Chem. Theory Comput., 18[7] (2022) 4387–4407. doi:10.1021/acs.jctc.2c00252.

136

Vladislav Kochetov, Sergey I. Bokarev. RhoDyn: a ρ-TD-RASCI framework to study ultrafast electron dynamics in molecules. J. Chem. Theory Comput., 18 (2022) 46–58. doi:10.1021/acs.jctc.1c01097.

137

Vladislav Kochetov, Huihui Wang, Sergey I. Bokarev. Effect of chemical structure on the ultrafast spin dynamics in core-excited states. J. Chem. Phys., 153 (2020) 044304. doi:10.1063/5.0005940.

138

J. Almlöf, K. Faegri, Jr., K. Korsell. Principles for a direct SCF approach to LICAO–MO ab-initio calculations. J. Comput. Chem., 3 (1982) 385–399. doi:10.1002/jcc.540030314.

139

Dieter Cremer, Jürgen Gauss. An unconventional SCF method for calculations on large molecules. J. Comput. Chem., 7 (1986) 274–282. doi:10.1002/jcc.540070305.

140

Marco Häser, Reinhart Ahlrichs. Improvements on the direct SCF method. J. Comput. Chem., 10 (1989) 104–111. doi:10.1002/jcc.540100111.

141

Gunnar Karlström. Dynamical damping based on energy minimization for use ab initio molecular orbital SCF calculations. Chem. Phys. Lett., 67 (1979) 348–350. doi:10.1016/0009-2614(79)85175-1.

142

Harrell Sellers. The C²-DIIS convergence acceleration algorithm. Int. J. Quantum Chem., 45 (1993) 31–41. doi:10.1002/qua.560450106.

143

Thomas H. Fischer, Jan Almlöf. General methods for geometry and wave function optimization. J. Phys. Chem., 96 (1992) 9768–9774. doi:10.1021/j100203a036.

144

S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys., 58 (1980) 1200–1211. doi:10.1139/p80-159.

145

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38 (1988) 3098–3100. doi:10.1103/PhysRevA.38.3098.

146

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136 (1964) B864–B871. doi:10.1103/PhysRev.136.B864.

147

W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140 (1965) A1133–A1138. doi:10.1103/PhysRev.140.A1133.

148

J. C. Slater. Quantum Theory of Molecular and Solids. Vol. 4. The Self-Consistent Field for Molecular and Solids. McGraw–Hill, New York, NY, USA, 1974.

149

A. D. Becke. Density functional calculations of molecular bond energies. J. Chem. Phys., 84 (1986) 4524–4529. doi:10.1063/1.450025.

150

Axel D. Becke, Erin R. Johnson. A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys., 127 (2007) 124108(1–8). doi:10.1063/1.2768530.

151

Nicholas C. Handy, Aron J. Cohen. Left–right correlation energy. Mol. Phys., 99 (2001) 403–412. doi:10.1080/00268970010018431.

152

Chengteh Lee, Weitao Yang, Robert G. Parr. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37 (1988) 785–789. doi:10.1103/PhysRevB.37.785.

153

Burkhard Miehlich, Andreas Savin, Hermann Stoll, Heinzwerner Preuss. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 157 (1989) 200–206. doi:10.1016/0009-2614(89)87234-3.

154

John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996) 3865–3868. doi:10.1103/PhysRevLett.77.3865.

155

Axel D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98 (1993) 5648–5652. doi:10.1063/1.464913.

156

Stefan Grimme. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys., 124 (2006) 034108(1–16). doi:10.1063/1.2148954.

157

Phillip A. Stewart, Peter M. W. Gill. Becke–Wigner: A simple but powerful density functional. J. Chem. Soc. Faraday Trans., 91 (1995) 4337–4341. doi:10.1039/FT9959104337.

158

Peter M. W. Gill. A new gradient-corrected exchange functional. Mol. Phys., 89 (1996) 433–445. doi:10.1080/002689796173813.

159

Wee-Meng Hoe, Aaron J. Cohen, Nicholas C. Handy. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett., 341 (2001) 319–328. doi:10.1016/S0009-2614(01)00581-4.

160

Mark J. Allen, Thomas W. Keal, David J. Tozer. Improved NMR chemical shifts in density functional theory. Chem. Phys. Lett., 380 (2003) 70–77. doi:10.1016/j.cplett.2003.08.101.

161

Thomas W. Keal, David J. Tozer. A semiempirical generalized gradient approximation exchange-correlation functional. J. Chem. Phys., 121 (2004) 5654–5660. doi:10.1063/1.1784777.

162

John P. Perdew, Matthias Ernzerhof, Kieron Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105 (1996) 9982–9985. doi:10.1063/1.472933.

163

Adrienn Ruzsinszky, Gábor I. Csonka, Gustavo E. Scuseria. Regularized gradient expansion for atoms, molecules, and solids. J. Chem. Theory Comput., 5 (2009) 763–769. doi:10.1021/ct8005369.

164

Vincent Tognetti, Pietro Cortona, Carlo Adamo. A new parameter-free correlation functional based on an average atomic reduced density gradient analysis. J. Chem. Phys., 128 (2008) 034101(1–8). doi:10.1063/1.2816137.

165

Marcel Swart, Miquel Solà, F. Matthias Bickelhaupt. A new all-round density functional based on spin states and \(\mathrm {S_N2}\) barriers. J. Chem. Phys., 131 (2009) 049103(1–9). doi:10.1063/1.3213193.

166

Yan Zhao, Donald G. Truhlar. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 125 (2006) 194101(1–18). doi:10.1063/1.2370993.

167

Yan Zhao, Donald G. Truhlar. Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 110 (2006) 13126–13130. doi:10.1021/jp066479k.

168

Yan Zhao, Donald G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 120 (2008) 215–241. doi:10.1007/s00214-007-0310-x.

169

Yan Zhao, Donald G. Truhlar. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 41 (2008) 157–167. doi:10.1021/ar700111a.

170

R. Lindh, U. Ryu, B. Liu. The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation. J. Chem. Phys., 95 (1991) 5889–5897. doi:10.1063/1.461610.

171

Ernest R. Davidson. Use of double cosets in constructing integrals over symmetry orbitals. J. Chem. Phys., 62 (1975) 400–403. doi:10.1063/1.430484.

172

Benny G. Johnson, Peter M. W. Gill, John A. Pople. The performance of a family of density functional methods. J. Chem. Phys., 98 (1993) 5612–5626. doi:10.1063/1.464906.

173

Nicholas C. Handy, David J. Tozer, Gregory J. Laming, Christopher W. Murray, Roger D. Amos. Analytic second derivatives of the potential energy surface. Isr. J. Chem., 33 (1993) 331–344. doi:10.1002/ijch.199300040.

174

Jon Baker, Jan Andzelm, Andrew Scheiner, Bernard Delley. The effect of grid quality and weight derivatives in density functional calculations. J. Chem. Phys., 101 (1994) 8894–8902. doi:10.1063/1.468081.

175

Michael E. Mura, Peter J. Knowles. Improved radial grids for quadrature in molecular density-functional calculations. J. Chem. Phys., 104 (1996) 9848–9858. doi:10.1063/1.471749.

176

A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88 (1988) 2547–2553. doi:10.1063/1.454033.

177

Christopher W. Murray, Nicholas C. Handy, Gregory J. Laming. Quadrature schemes for integrals of density functional theory. Mol. Phys., 78 (1993) 997–1014. doi:10.1080/00268979300100651.

178

Oliver Treutler, Reinhart Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102 (1995) 346–354. doi:10.1063/1.469408.

179

Roland Lindh, Per-Åke Malmqvist, Laura Gagliardi. Molecular integrals by numerical quadrature. I. Radial integration. Theor. Chem. Acc., 106 (2001) 178–187. doi:10.1007/s002140100263.

180

Daoling Peng, Markus Reiher. Exact decoupling of the relativistic Fock operator. Theor. Chem. Acc., 131 (2012) 1081(1–20). doi:10.1007/s00214-011-1081-y.

181

Daoling Peng, Kimihiko Hirao. An arbitrary order Douglas–Kroll method with polynomial cost. J. Chem. Phys., 130 (2009) 044102(1–10). doi:10.1063/1.3068310.

182

Markus Reiher, Alexander Wolf. Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys., 121 (2004) 2037–2047. doi:10.1063/1.1768160.

183

Markus Reiher, Alexander Wolf. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order. J. Chem. Phys., 121 (2004) 10945–10956. doi:10.1063/1.1818681.

184

Markus Reiher. Douglas–Kroll–Hess theory: a relativistic electrons-only theory for chemistry. Theor. Chem. Acc., 116 (2006) 241–252. doi:10.1007/s00214-005-0003-2.

185

Alexander Wolf, Markus Reiher, Bernd Artur Hess. The generalized Douglas–Kroll transformation. J. Chem. Phys., 117 (2002) 9215–9226. doi:10.1063/1.1515314.

186

Alexander Wolf, Markus Reiher. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. J. Chem. Phys., 124 (2006) 064102(1–11). doi:10.1063/1.2161179.

187

Alexander Wolf, Markus Reiher. Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas–Kroll–Hess theory up to arbitrary order. J. Chem. Phys., 124 (2006) 064103(1–10). doi:10.1063/1.2161180.

188

Werner Kutzelnigg, Wenjian Liu. Quasirelativistic theory equivalent to fully relativistic theory. J. Chem. Phys., 123 (2005) 241102(1–4). doi:10.1063/1.2137315.

189

Wenjian Liu, Daoling Peng. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J. Chem. Phys., 125 (2006) 044102(1–10). doi:10.1063/1.2222365.

190

Daoling Peng, Wenjian Liu, Yunlong Xiao, Lan Cheng. Making four- and two-component relativistic density functional methods fully equivalent based on the idea of "from atoms to molecule". J. Chem. Phys., 127 (2007) 104106(1–15). doi:10.1063/1.2772856.

191

Maria Barysz, Andrzej J. Sadlej, Jaap G. Snijders. Nonsingular two/one-component relativistic Hamiltonians accurate through arbitrary high order in \(\alpha ^2\). Int. J. Quantum Chem., 65 (1997) 225–239. doi:10.1002/(SICI)1097-461X(1997)65:3<225::AID-QUA4>3.0.CO;2-Y.

192

Dariusz Kędziera, Maria Barysz. Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation. Chem. Phys. Lett., 446 (2007) 176–181. doi:10.1016/j.cplett.2007.08.006.

193

Daoling Peng, Markus Reiher. Local relativistic exact decoupling. J. Chem. Phys., 136 (2012) 244108. doi:10.1063/1.4729788.

194

Liviu F. Chibotaru, Liviu Ungur, Alessandro Soncini. The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem. Int. Ed., 47 (2008) 4126–4129. doi:10.1002/anie.200800283.

195

Liviu F. Chibotaru, Liviu Ungur, Christophe Aronica, Hani Elmoll, Guillaume Pillet, Dominique Luneau. Structure, magnetism, and theoretical study of a mixed-valence \(\ce {Co^{II}_3Co^{III}_4}\) heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc., 130 (2008) 12445–12455. doi:10.1021/ja8029416.

196

Liviu F. Chibotaru, Liviu Ungur. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys., 137 (2012) 064112(1–22). doi:10.1063/1.4739763.

197

Liviu Ungur, Liviu F. Chibotaru. Ab initio crystal field for lanthanides. Chem. Eur. J., 23[15] (2017) 3708–3718. doi:10.1002/chem.201605102.

198

Czeslaw Rudowicz. Transformation relations for the conventional \(O^k_q\) and normalised \(O'^k_q\) Stevens Operator Equivalents with \(k=1\) to \(6\) and \(-k \le q \le k\). J. Phys. C: Solid State Phys., 18[7] (1985) 1415. doi:10.1088/0022-3719/18/7/009.

199

C. Rudowicz, C. Y. Chung. Generalization of the extended Stevens operators to higher ranks and spins and systematic review of the tables of the tensor operators and their matrix elements. J. Phys.: Condens. Matter, 16[32] (2004) 5825. doi:10.1088/0953-8984/16/32/018.

200

Czeslaw Rudowicz, Miroslav Karbowiak. Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians. Coord. Chem. Rev., 287 (2015) 28. doi:10.1016/j.ccr.2014.12.006.

201

Roland Lindh, Anders Bernhardsson, Gunnar Karlström, Per-Åke Malmqvist. On the use of a Hessian model function in molecular geometry optimizations. Chem. Phys. Lett., 241 (1995) 423–428. doi:10.1016/0009-2614(95)00646-L.

202

Chunyang Peng, Philippe Y. Ayala, H. Bernhard Schlegel, Michael J. Frisch. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 17 (1996) 49–56. doi:10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0.

203

P. Pulay, G. Fogarasi. Geometry optimization in redundant internal coordinates. J. Chem. Phys., 96 (1992) 2856–2860. doi:10.1063/1.462844.

204

Jon Baker, Alain Kessi, Bernard Delley. The generation and use of delocalized internal coordinates in geometry optimization. J. Chem. Phys., 105 (1996) 192–212. doi:10.1063/1.471864.

205

Roland Lindh, Anders Bernhardsson, Martin Schütz. Force-constant weighted redundant coordinates in molecular geometry optimizations. Chem. Phys. Lett., 303 (1999) 567–575. doi:10.1016/S0009-2614(99)00247-X.

206

Jon Baker. Techniques for geometry optimization: A comparison of Cartesian and natural internal coordinates. J. Comput. Chem., 14 (1993) 1085–1100. doi:10.1002/jcc.540140910.

207

M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, Jr., K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople. Gaussian 94 (Revision A.1). Gaussian, Inc., Pittsburgh, PA, USA, 1995.

208

Josep Maria Bofill. Updated Hessian matrix and the restricted step method for locating transition structures. J. Comput. Chem., 15 (1994) 1–11. doi:10.1002/jcc.540150102.

209

Josep Maria Bofill. Remarks on the updated Hessian matrix methods. Int. J. Quantum Chem., 94 (2003) 324–332. doi:10.1002/qua.10709.

210

Ajit Banerjee, Noah Adams, Jack Simons, Ron Shepard. Search for stationary points on surfaces. J. Phys. Chem., 89 (1985) 52–57. doi:10.1021/j100247a015.

211

Emili Besalú, Josep Maria Bofill. On the automatic restricted-step rational-function-optimization method. Theor. Chem. Acc., 100 (1998) 265–274. doi:10.1007/s002140050387.

212

Pál Császár, Péter Pulay. Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struct., 114 (1984) 31–34. doi:10.1016/S0022-2860(84)87198-7.

213

Péter Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 73 (1980) 393–398. doi:10.1016/0009-2614(80)80396-4.

214

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3 (1982) 556–560. doi:10.1002/jcc.540030413.

215

Charles J. Cerjan, William H. Miller. On finding transition states. J. Chem. Phys., 75 (1981) 2800–2806. doi:10.1063/1.442352.

216

Gerardo Raggi, Ignacio Fdez. Galván, Christian L. Ritterhoff, Morgane Vacher, Roland Lindh. Restricted-variance molecular geometry optimization based on gradient-enhanced Kriging. J. Chem. Theory Comput., 16[6] (2020) 3989–4001. doi:10.1021/acs.jctc.0c00257.

217

Ignacio Fdez. Galván, Gerardo Raggi, Roland Lindh. Restricted-variance constrained, reaction path, and transition state molecular optimizations using gradient-enhanced Kriging. J. Chem. Theory Comput., 17[1] (2021) 571–582. doi:10.1021/acs.jctc.0c01163.

218

Ignacio Fdez. Galván, Roland Lindh. Smooth things come in threes: a diabatic surrogate model for conical intersection optimization. J. Chem. Theory Comput., 19[11] (2023) 3418–3427. doi:10.1021/acs.jctc.3c00389.

219

Satoshi Maeda, Koichi Ohno, Keiji Morokuma. Updated branching plane for finding conical intersections without coupling derivative vectors. J. Chem. Theory Comput., 6[5] (2010) 1538–1545. doi:10.1021/ct1000268.

220

John C. Tully. Molecular dynamics with electronic transitions. J. Chem. Phys., 93[2] (1990) 1061–1071. doi:10.1063/1.459170.

221

Sharon Hammes-Schiffer, John C. Tully. Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys., 101[6] (1994) 4657–4667. doi:10.1063/1.467455.

222

Giovanni Granucci, Maurizio Persico. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys., 126[13] (2007) 134114(1–11). doi:10.1063/1.2715585.

223

F. Plasser, M. Wormit, S. A. Mewes, B. Thomitzni, A. Dreuw. libwfa: Wave-function analysis tool library for quantum chemical applications. URL: https://github.com/libwfa/libwfa.

224

Felix Plasser, Anna I. Krylov, Andreas Dreuw. Libwfa: wavefunction analysis tools for excited and open-shell electronic states. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 12 (2022) e1595. doi:10.1002/wcms.1595.

225

Felix Plasser, Stefanie A. Mewes, Andreas Dreuw, Leticia González. Detailed wave function analysis for multireference methods: Implementation in the Molcas program package and applications to tetracene. J. Chem. Theory Comput., 13[11] (2017) 5343–5353. doi:10.1021/acs.jctc.7b00718.

226

Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118[11] (2003) 4775–4777. doi:10.1063/1.1558471.

227

Felix Plasser, Michael Wormit, Andreas Dreuw. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys., 141[2] (2014) 024106. doi:10.1063/1.4885819.

228

Felix Plasser, Stefanie A. Bäppler, Michael Wormit, Andreas Dreuw. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys., 141[2] (2014) 024107. doi:10.1063/1.4885820.

229

Stefanie A. Bäppler, Felix Plasser, Michael Wormit, Andreas Dreuw. Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A, 90[5] (2014) 052521. doi:10.1103/PhysRevA.90.052521.

230

Felix Plasser, Benjamin Thomitzni, Stefanie A. Bäppler, Jan Wenzel, Dirk R. Rehn, Michael Wormit, Andreas Dreuw. Statistical analysis of electronic excitation processes: Spatial location, compactness, charge transfer, and electron-hole correlation. J. Comput. Chem., 36[21] (2015) 1609–1620. doi:10.1002/jcc.23975.

231

Felix Plasser, Hans Lischka. Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J. Chem. Theory Comput., 8[8] (2012) 2777–2789. doi:10.1021/ct300307c.

232

F. Plasser. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys., 152[8] (2020) 084108. doi:10.1063/1.5143076.

233

Martin Head-Gordon. Characterizing unpaired electrons from the one-particle density matrix. Chem. Phys. Lett., 372[3-4] (2003) 508–511. doi:10.1016/S0009-2614(03)00422-6.

234

Felix Plasser. Entanglement entropy of electronic excitations. J. Chem. Phys., 144[19] (2016) 194107. doi:10.1063/1.4949535.

235

Patrick Kimber, Felix Plasser. Toward an understanding of electronic excitation energies beyond the molecular orbital picture. Phys. Chem. Chem. Phys., 22[11] (2020) 6058–6080. doi:10.1039/d0cp00369g.

236

Andrzej J. Sadlej. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect. Czech. Chem. Commun., 53 (1988) 1995–2016. doi:10.1135/cccc19881995.

237

Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. II. Second-row atoms: \(\ce {Si}\) through \(\ce {Cl}\). Theor. Chim. Acta, 79 (1991) 123–140. doi:10.1007/BF01127101.

238

Andrzej J. Sadlej, Miroslav Urban. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali (\(\ce {Li}\), \(\ce {Na}\), \(\ce {K}\), \(\ce {Rb}\)) and alkaline-earth (\(\ce {Be}\), \(\ce {Mg}\), \(\ce {Ca}\), \(\ce {Sr}\)) atoms. J. Mol. Struct. Theochem, 234 (1991) 147–171. doi:10.1016/0166-1280(91)89010-X.

239

Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. IV. Third-row atoms: \(\ce {Ge}\) through \(\ce {Br}\). Theor. Chim. Acta, 81 (1991) 45–63. doi:10.1007/BF01113377.

240

Andrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. V. Fourth-row atoms: \(\ce {Sn}\) through \(\ce {I}\). Theor. Chim. Acta, 81 (1992) 339–354. doi:10.1007/BF01118573.

241

Vladimir Kellö, Andrzej J. Sadlej. Estimates of relativistic contributions to molecular properties. J. Chem. Phys., 93 (1990) 8122–8132. doi:10.1063/1.459342.

242

Andrzej J. Sadlej, Miroslav Urban. Mutual dependence of relativistic and electron correlation contributions to molecular properties: The dipole moment of \(\ce {AgH}\). Chem. Phys. Lett., 176 (1991) 293–302. doi:10.1016/0009-2614(91)90033-6.

243

Sigeru Huzinaga, Luis Seijo, Zoila Barandiarán, Mariusz Klobukowski. The ab initio model potential method. Main group elements. J. Chem. Phys., 86 (1987) 2132–2145. doi:10.1063/1.452111.

244

Zoila Barandiarán, Luis Seijo. The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on \(\ce {NaCl{:}Cu^+}\). J. Chem. Phys., 89 (1988) 5739–5746. doi:10.1063/1.455549.

245

Zoila Barandiarán, Luis Seijo, Sigeru Huzinaga. The ab initio model potential method. Second series transition metal elements. J. Chem. Phys., 93 (1990) 5843–5850. doi:10.1063/1.459580.

246

Christina Wittborn, Ulf Wahlgren. New relativistic effective core potentials for heavy elements. Chem. Phys., 201 (1995) 357–362. doi:10.1016/0301-0104(95)00265-0.

247

Frank Rakowitz, Christel M. Marian, Luis Seijo, Ulf Wahlgren. Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements \(\ce {Sc}\) to \(\ce {Hg}\). Part I. J. Chem. Phys., 110 (1999) 3678–3686. doi:10.1063/1.478257.

248

Frank Rakowitz, Christel M. Marian, Luis Seijo. Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements \(\ce {Sc}\) to \(\ce {Hg}\). II. J. Chem. Phys., 111 (1999) 10436–10443. doi:10.1063/1.480398.

249

Z. Barandiarán, L. Seijo. Local properties of imperfect crystals. In S. Fraga, editor, Computational Chemistry: Structure, Interactions and Reactivity, volume 77B of Studies in Physical and Theoretical Chemistry, pages 435–461. Elsevier, Amsterdam, Netherlands, 1992.

250

James C. Phillips, Leonard Kleinman. New method for calculating wave functions in crystals and molecules. Phys. Rev., 116 (1959) 287–294. doi:10.1103/PhysRev.116.287.

251

S. Huzinaga, A. A. Cantu. Theory of separability of many-electron systems. J. Chem. Phys., 55 (1971) 5543–5549. doi:10.1063/1.1675720.

252

Sigeru Huzinaga, Dennis McWilliams, Antonio A. Cantu. Projection operators in Hartree–Fock theory. Adv. Quantum Chem., 7 (1973) 187–220. doi:10.1016/S0065-3276(08)60562-6.

253

José Luis Pascual, Luis Seijo, Zoila Barandiarán. Ab initio model potential study of environmental effects on the Jahn–Teller parameters of \(\ce {Cu^{2+}}\) and \(\ce {Ag^{2+}}\) impurities in \(\ce {MgO}\), \(\ce {CaO}\), and \(\ce {SrO}\) hosts. J. Chem. Phys., 98 (1993) 9715–9724. doi:10.1063/1.464350.

254

M. Pelissier, N. Komiha, J.-P. Daudey. One-center expansion for pseudopotential matrix elements. J. Comput. Chem., 9 (1988) 298–302. doi:10.1002/jcc.540090404.

255

P. Jeffrey Hay, Willard R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms \(\ce {Sc}\) to \(\ce {Hg}\). J. Chem. Phys., 82 (1985) 270–283. doi:10.1063/1.448799.

256

P. Jeffrey Hay, Willard R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for main group elements \(\ce {Na}\) to \(\ce {Bi}\). J. Chem. Phys., 82 (1985) 284–298. doi:10.1063/1.448800.

257

P. Jeffrey Hay, Willard R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for \(\ce {K}\) to \(\ce {Au}\) including the outermost core orbitals. J. Chem. Phys., 82 (1985) 299–310. doi:10.1063/1.448975.

258

Patricio Fuentealba, Heinzwerner Preuss, Hermann Stoll, László Von Szentpály. A proper account of core-polarization with pseudopotentials: Single valence-electron alkali compounds. Chem. Phys. Lett., 89 (1982) 418–422. doi:10.1016/0009-2614(82)80012-2.

259

P. Fuentealba, L. von Szentpály, H. Preuss, H. Stoll. Pseudopotential calculations for alkaline-earth atoms. J. Phys. B: At. Mol. Phys., 18 (1985) 1287–1296. doi:10.1088/0022-3700/18/7/010.

260

G. Igel-Mann, H. Stoll, H. Preuss. Pseudopotentials for main group elements (IIIa through VIIa). Mol. Phys., 65 (1988) 1321–1328. doi:10.1080/00268978800101811.

261

Andreas Bergner, Michael Dolg, Wolfgang Küchle, Hermann Stoll, Heinzwerner Preuß. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys., 80 (1993) 1431–1441. doi:10.1080/00268979300103121.

262

P. Fuentealba, H. Stoll, L. von Szentpály, P. Schwerdtfeger, H. Preuss. On the reliability of semi-empirical pseudopotentials: Simulation of Hartree–Fock and Dirac–Fock results. J. Phys. B: At. Mol. Phys., 16 (1983) L323–L328. doi:10.1088/0022-3700/16/11/001.

263

M. Kaupp, P. v. R. Schleyer, H. Stoll, H. Preuss. Pseudopotential approaches to \(\ce {Ca}\), \(\ce {Sr}\), and \(\ce {Ba}\) hydrides. Why are some alkaline earth \(\ce {MX2}\) compounds bent? J. Chem. Phys., 94 (1991) 1360–1366. doi:10.1063/1.459993.

264

M. Dolg, U. Wedig, H. Stoll, H. Preuss. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys., 86 (1987) 866–872. doi:10.1063/1.452288.

265

Ulrich Wedig, Michael Dolg, Hermann Stoll, Heinzwerner Preuss. Energy-adjusted pseudopotentials for transition-metal elements. In A. Veillard, editor, Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, volume 176 of NATO ASI Series, pages 79–89. D. Reidel, Dordrecht, Netherlands, 1986. doi:10.1007/978-94-009-4656-9_6.

266

László Von Szentpály, Patricio Fuentealba, Heinzwerner Preuss, Hermann Stoll. Pseudopotential calculations on \(\ce {Rb2^+}\), \(\ce {Cs2^+}\), \(\ce {RbH^+}\), \(\ce {CsH^+}\) and the mixed alkali dimer ions. Chem. Phys. Lett., 93 (1982) 555–559. doi:10.1016/0009-2614(82)83728-7.

267

D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 77 (1990) 123–141. doi:10.1007/BF01114537.

268

H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpály, H. Preuss. \(\ce {Cu}\) and \(\ce {Ag}\) as one-valence-electron atoms: CI results and quadrupole corrections for \(\ce {Cu2}\), \(\ce {Ag2}\), \(\ce {CuH}\), and \(\ce {AgH}\). J. Chem. Phys., 81 (1984) 2732–2736. doi:10.1063/1.447992.

269

W. Küchle, M. Dolg, H. Stoll, H. Preuss. Ab initio pseudopotentials for \(\ce {Hg}\) through \(\ce {Rn}\). I. Parameter sets and atomic calculations. Mol. Phys., 74 (1991) 1245–1263. doi:10.1080/00268979100102941.

270

Gudrun Igel-Mann. Semiempirische Pseudopotentiale; Untersuchungen an Hauptgruppenelementen und Nebengruppenelementen mit abgeschlossener d-Schale. PhD thesis, Universität Stuttgart, Institut für Theoretische Chemie, 1987. URL: http://d-nb.info/880888474.

271

M. Dolg, H. Stoll, H. Preuss. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta, 85 (1993) 441–450. doi:10.1007/BF01112983.

272

M. Dolg, H. Stoll, H. Preuss. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 90 (1989) 1730–1734. doi:10.1063/1.456066.

273

Michael Dolg, Peter Fulde, Wolfgang Küchle, Carl-Stefan Neumann, Hermann Stoll. Ground state calculations of di-\({\pi }\)-cyclooctatetraene cerium. J. Chem. Phys., 94 (1991) 3011–3017. doi:10.1063/1.459824.

274

M. Dolg, H. Stoll, A. Savin, H. Preuss. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta, 75 (1989) 173–194. doi:10.1007/BF00528565.

275

Michael Dolg, Hermann Stoll, Heinz-Jürgen Flad, Heinzwerner Preuss. Ab initio pseudopotential study of \(\ce {Yb}\) and \(\ce {YbO}\). J. Chem. Phys., 97 (1992) 1162–1173. doi:10.1063/1.463244.

276

Michael Dolg, Hermann Stoll, Heinzwerner Preuss, Russell M. Pitzer. Relativistic and correlation effects for element 105 (hahnium, \(\ce {Ha}\)): A comparative study of \(\ce {M}\) and \(\ce {MO}\) (\(\ce {M}\) = \(\ce {Nb}\), \(\ce {Ta}\), \(\ce {Ha}\)) using energy-adjusted ab initio pseudopotentials. J. Phys. Chem., 97 (1993) 5852–5859. doi:10.1021/j100124a012.

277

Peter Schwerdtfeger, Michael Dolg, W. H. Eugen Schwarz, Graham A. Bowmaker, Peter D. W. Boyd. Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys., 91 (1989) 1762–1774. doi:10.1063/1.457082.

278

U. Häussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger, R. M. Pitzer. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials. All-electron and pseudopotential benchmark calculations for \(\ce {Hg}\), \(\ce {HgH}\) and their cations. Mol. Phys., 78 (1993) 1211–1224. doi:10.1080/00268979300100801.

279

W. Küchle, M. Dolg, H. Stoll, H. Preuss. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys., 100 (1994) 7535–7542. doi:10.1063/1.466847.

280

Andreas Nicklass, Michael Dolg, Hermann Stoll, Heinzwerner Preuss. Ab initio energy-adjusted pseudopotentials for the noble gases \(\ce {Ne}\) through \(\ce {Xe}\): Calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys., 102 (1995) 8942–8952. doi:10.1063/1.468948.

281

Thierry Leininger, Andreas Nicklass, Hermann Stoll, Michael Dolg, Peter Schwerdtfeger. The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of \(\ce {InH}\), \(\ce {InF}\), and \(\ce {InCl}\). J. Chem. Phys., 105 (1996) 1052–1059. doi:10.1063/1.471950.

282

Xiaoyan Cao, Michael Dolg, Hermann Stoll. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys., 118 (2003) 487–496. doi:10.1063/1.1521431.

283

L. R. Kahn, W. A. Goddard, III. A direct test of the validity of the use of pseudopotentials in molecules. Chem. Phys. Lett., 2 (1968) 667–670. doi:10.1016/0009-2614(63)80049-4.

284

Phillip A. Christiansen, Yoon S. Lee, Kenneth S. Pitzer. Improved ab initio effective core potentials for molecular calculations. J. Chem. Phys., 71 (1979) 4445–4450. doi:10.1063/1.438197.

285

Philippe Durand, Jean-Claude Barthelat. A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor. Chim. Acta, 38 (1975) 283–302. doi:10.1007/BF00963468.

286

Chris-Kriton Skylaris, Laura Gagliardi, Nicholas C. Handy, Andrew G. Ioannou, Steven Spencer, Andrew Willetts, Adrian M. Simper. An efficient method for calculating effective core potential integrals which involve projection operators. Chem. Phys. Lett., 296 (1998) 445–451. doi:10.1016/S0009-2614(98)01077-X.

287

Harry Partridge, Stephen R. Langhoff, Charles W. Bauschlicher, Jr. Electronic spectroscopy of diatomic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 209–260. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_6.

288

Peter R. Taylor. Molecular symmetry and quantum chemistry. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 89–176. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_3.

289

Margareta R. A. Blomberg, Per E. M. Siegbahn, Björn O. Roos. A theoretical study of \(\ce {NiH}\) optical spectrum and potential curves. Mol. Phys., 47 (1982) 127–143. doi:10.1080/00268978200100092.

290

Rosendo Pou-Amérigo, Manuela Merchán, Ignacio Nebot-Gil, Per-Åke Malmqvist, Björn O. Roos. The chemical bonds in \(\ce {CuH}\), \(\ce {Cu2}\), \(\ce {NiH}\), and \(\ce {Ni2}\) studied with multiconfigurational second order perturbation theory. J. Chem. Phys., 101 (1994) 4893–4902. doi:10.1063/1.467411.

291

Kerstin Andersson, Björn O. Roos. Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory. Chem. Phys. Lett., 191 (1992) 507–514. doi:10.1016/0009-2614(92)85581-T.

292

Gerhard Herzberg. Molecular Spectra and Molecular Structure. Vol I. Spectra of Diatomic Molecules. D. Van Nostrand, Princeton, NJ, USA, 2nd edition, 1966.

293

Peter R. Taylor. Accurate calculations and calibration. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 325–412. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_7.

294

Remedios González-Luque, Manuela Merchán, Björn O. Roos. A theoretical determination of the dissociation energy of the nitric oxide dimer. Theor. Chim. Acta, 88 (1994) 425–435. doi:10.1007/BF01113292.

295

M. Perić, B. Engels, S. D. Peyerimhoff. Theoretical spectroscopy on small molecules: ab initio investigations of vibronic structure, spin–orbit splittings and magnetic hyperfine effects in the electronic spectra of triatomic molecules. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 261–356. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_7.

296

Trygve Helgaker. Optimization of minima and saddle points. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 295–324. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_6.

297

Mercedes Rubio, Manuela Merchán, Enrique Ortí, Björn O. Roos. A theoretical study of the electronic spectrum of naphthalene. Chem. Phys., 179 (1994) 395–409. doi:10.1016/0301-0104(94)87016-0.

298

Luis Serrano-Andrés, Manuela Merchán, Ignacio Nebot-Gil, Roland Lindh, Björn O. Roos. Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene. J. Chem. Phys., 98 (1993) 3151–3162. doi:10.1063/1.465071.

299

Luis Serrano-Andrés, Björn O. Roos. Theoretical study of the absorption and emission spectra of indole in the gas phase and in a solvent. J. Am. Chem. Soc., 118 (1996) 185–195. doi:10.1021/ja952035i.

300

Christopher S. Page, Manuela Merchán, Luis Serrano-Andrés, Massimo Olivucci. A theoretical study of the low-lying excited states of trans- and cis-urocanic acid. J. Phys. Chem. A, 103 (1999) 9864–9871. doi:10.1021/jp991657d.

301

Rosendo Pou-Amérigo, Manuela Merchán, Enrique Ortí. Theoretical study of the electronic spectrum of p-benzoquinone. J. Chem. Phys., 110 (1999) 9536–9546. doi:10.1063/1.478918.

302

C. E. Blom, A. Bauder. Microwave spectrum, rotational constants and dipole moment of s-cis acrolein. Chem. Phys. Lett., 88 (1982) 55–58. doi:10.1016/0009-2614(82)80069-9.

303

Vicent Molina, Manuela Merchán. Theoretical analysis of the electronic spectra of benzaldehyde. J. Phys. Chem. A, 105 (2001) 3745–3751. doi:10.1021/jp004041t.

304

Francis Ford, Tetsuro Yuzawa, Matthew S. Platz, Stephan Matzinger, Markus Fülscher. Rearrangement of dimethylcarbene to propene: Study by laser flash photolysis and ab initio molecular orbital theory. J. Am. Chem. Soc., 120 (1998) 4430–4438. doi:10.1021/ja9724598.

305

Timothy J. Lee, Peter R. Taylor. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem., 36-S23 (1989) 199–207. doi:10.1002/qua.560360824.

306

Timothy J. Lee, Gustavo E. Scuseria. Achieving chemical accuracy with coupled-cluster theory. In Stephen R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, volume 13 of Understanding Chemical Reactivity, pages 47–108. Kluwer Academic Publishers, Dordrecht, Netherlands, 1995. doi:10.1007/978-94-011-0193-6_2.

307

S. Matzinger, M. P. Fülscher. Methyl substitution in carbenes. A theoretical prediction of the singlet–triplet energy separation of dimethylcarbene. J. Phys. Chem., 99 (1995) 10747–10751. doi:10.1021/j100027a012.

308

David J. Tozer, Roger D. Amos, Nicholas C. Handy, Björn O. Roos, Luis Serrano-Andrés. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol. Phys., 97 (1999) 859–868. doi:10.1080/00268979909482888.

309

Luis Serrano-Andrés, Markus P. Fülscher, Björn O. Roos, Manuela Merchán. Theoretical study of the electronic spectrum of imidazole. J. Phys. Chem., 100 (1996) 6484–6491. doi:10.1021/jp952809h.

310

Luis Serrano-Andrés. Estudio teórico del espectro electrónico de sistemas orgánicos. PhD thesis, Universitat de València, 1994. URL: https://www.educacion.es/teseo/mostrarRef.do?ref=133347.

311

Luis Serrano-Andrés, Manuela Merchán, Markus Fülscher, Björn O. Roos. A theoretical study of the electronic spectrum of thiophene. Chem. Phys. Lett., 211 (1993) 125–134. doi:10.1016/0009-2614(93)80061-S.

312

Karl Kaufmann, Werner Baumeister, Martin Jungen. Universal Gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions. J. Phys. B: At. Mol. Opt. Phys., 22 (1989) 2223–2240. doi:10.1088/0953-4075/22/14/007.

313

M. P. Fülscher, B. O. Roos. The excited states of pyrazine: A basis set study. Theor. Chim. Acta, 87 (1994) 403–413. doi:10.1007/BF01113393.

314

Kerstin Andersson. Multiconfigurational perturbation theory. PhD thesis, Lunds Universitet, 1992. URL: https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-21628.

315

Markus P. Fülscher, Luis Serrano-Andrés, Björn O. Roos. A theoretical study of the electronic spectra of adenine and guanine. J. Am. Chem. Soc., 119 (1997) 6168–6176. doi:10.1021/ja964426i.

316

Luis Serrano-Andrés, Markus P. Fülscher. Theoretical study of the electronic spectroscopy of peptides. 1. The peptidic bond: Primary, secondary, and tertiary amides. J. Am. Chem. Soc., 118 (1996) 12190–12199. doi:10.1021/ja961996+.

317

Manuela Merchán, Enrique Ortí, Björn O. Roos. Theoretical determination of the electronic spectrum of free base porphin. Chem. Phys. Lett., 226 (1994) 27–37. doi:10.1016/0009-2614(94)00681-4.

318

Luis Serrano-Andrés, Björn O. Roos. A theoretical study of the indigoid dyes and their chromophore. Chem. Eur. J., 3 (1997) 717–725. doi:10.1002/chem.19970030511.

319

K. Pierloot, E. Van Praet, L. G. Vanquickenborne, B. O. Roos. Systematic ab initio study of the ligand field spectra of hexacyanometalate complexess. J. Phys. Chem., 97 (1993) 12220–12228. doi:10.1021/j100149a021.

320

Kristine Pierloot, Jan O. A. De Kerpel, Ulf Ryde, Björn O. Roos. Theoretical study of the electronic spectrum of plastocyanin. J. Am. Chem. Soc., 119 (1997) 218–226. doi:10.1021/ja962381f.

321

Kristine Pierloot, Eftimios Tsokos, Björn O. Roos. 3p–3d intershell correlation effects in transition metal ions. Chem. Phys. Lett., 214 (1993) 583–590. doi:10.1016/0009-2614(93)85687-J.

322

Manuela Merchán, Remedios González-Luque. Ab initio study on the low-lying excited states of retinal. J. Chem. Phys., 106 (1997) 1112–1122. doi:10.1063/1.473207.

323

Luis Serrano-Andrés, Manuela Merchán, Björn O. Roos, Roland Lindh. Theoretical study of the internal charge transfer in aminobenzonitriles. J. Am. Chem. Soc., 117 (1995) 3189–3204. doi:10.1021/ja00116a024.

324

Manuela Merchán, Rosendo Pou-Amérigo, Björn O. Roos. A theoretical study of the dissociation energy of \(\ce {Ni2^+}\). A case of broken symmetry. Chem. Phys. Lett., 252 (1996) 405–414. doi:10.1016/0009-2614(96)00105-4.

325

M. P. Fülscher, S. Matzinger, T. Bally. Excited states in polyene radical cations. An ab initio theoretical study. Chem. Phys. Lett., 236 (1995) 167–176. doi:10.1016/0009-2614(95)00208-L.

326

Mercedes Rubio, Manuela Merchán, Enrique Ortí, Björn O. Roos. A theoretical study of the electronic spectra of the biphenyl cation and anion. J. Phys. Chem., 99 (1995) 14980. doi:10.1021/j100041a011.

327

Vincenzo Barone, Maurizio Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A, 102 (1998) 1995–2001. doi:10.1021/jp9716997.

328

Maurizio Cossi, Nadia Rega, Giovanni Scalmani, Vincenzo Barone. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys., 114 (2001) 5691–5701. doi:10.1063/1.1354187.

329

Gunnar Karlström. New approach to the modeling of dielectric media effects in ab initio quantum chemical calculations. J. Phys. Chem., 92 (1988) 1315–1318. doi:10.1021/j100316a060.

330

Luis Serrano-Andrés, Markus P. Fülscher, Gunnar Karlström. Solvent effects on electronic spectra studied by multiconfigurational perturbation theory. Int. J. Quantum Chem., 65 (1997) 167–181. doi:10.1002/(SICI)1097-461X(1997)65:2<167::AID-QUA8>3.0.CO;2-U.

331

Jacopo Tomasi, Maurizio Persico. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev., 94 (1994) 2027–2094. doi:10.1021/cr00031a013.

332

Maurizio Cossi, Vincenzo Barone. Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys., 112 (2000) 2427–2435. doi:10.1063/1.480808.

333

Anders Bernhardsson, Roland Lindh, Gunnar Karlström, Björn O. Roos. Direct self-consistent reaction field with Pauli repulsion: Solvation effects on methylene peroxide. Chem. Phys. Lett., 251 (1996) 141–149. doi:10.1016/0009-2614(96)00127-3.

334

W. F. Forbes, R. Shilton. Electronic spectra and molecular dimensions. III. Steric effects in methyl-substituted \({\alpha }\),\({\beta }\)-unsaturated aldehydes. J. Am. Chem. Soc., 81 (1959) 786–790. doi:10.1021/ja01513a006.

335

Marvin Douglas, Norman M. Kroll. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys., 82 (1974) 89–155. doi:10.1016/0003-4916(74)90333-9.

336

Bernd A. Hess. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A, 33 (1986) 3742–3748. doi:10.1103/PhysRevA.33.3742.

337

Per-Åke Malmqvist, Björn O. Roos, Bernd Schimmelpfennig. The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chem. Phys. Lett., 357 (2002) 230–240. doi:10.1016/S0009-2614(02)00498-0.

338

Bernd A. Heß, Christel M. Marian, Ulf Wahlgren, Odd Gropen. A mean-field spin–orbit method applicable to correlated wavefunctions. Chem. Phys. Lett., 251 (1996) 365–371. doi:10.1016/0009-2614(96)00119-4.

339

B. Schimmelpfennig. AMFI, an atomic mean-field spin–orbit integral program. Computer code, 1996. University of Stockholm.

340

Björn O. Roos, Per-Åke Malmqvist. On the effects of spin–orbit coupling on molecular properties: Dipole moment and polarizability of \(\ce {PbO}\) and spectroscopic constants for the ground and excited states. Adv. Quantum Chem., 47 (2004) 37–49. doi:10.1016/S0065-3276(04)47003-8.

341

Ulf Wahlgren. The effective core potential method. In Björn O. Roos, editor, Lecture Notes in Quantum Chemistry. European Summer School in Quantum Chemistry, volume 58 of Lecture Notes in Chemistry, pages 413–421. Springer-Verlag, Berlin, Germany, 1992. doi:10.1007/978-3-642-58150-2_8.

342

Luis Seijo, Zoila Barandiarán. The ab initio model potential method: A common strategy for effective core potential and embedded cluster calculations. In Jerzy Leszczynski, editor, Computational Chemistry: Reviews of Current Trends, volume 4, pages 55–152. World Scientific, Singapore, 1999. doi:10.1142/9789812815156_0002.